Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 153(3): 692-706, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23602152

RESUMO

TET dioxygenases successively oxidize 5-methylcytosine (5mC) in mammalian genomes to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC/5caC can be excised and repaired to regenerate unmodified cytosines by thymine-DNA glycosylase (TDG) and base excision repair (BER) pathway, but it is unclear to what extent and at which part of the genome this active demethylation process takes place. Here, we have generated genome-wide distribution maps of 5hmC/5fC/5caC using modification-specific antibodies in wild-type and Tdg-deficient mouse embryonic stem cells (ESCs). In wild-type mouse ESCs, 5fC/5caC accumulates to detectable levels at major satellite repeats but not at nonrepetitive loci. In contrast, Tdg depletion in mouse ESCs causes marked accumulation of 5fC and 5caC at a large number of proximal and distal gene regulatory elements. Thus, these results reveal the genome-wide view of iterative 5mC oxidation dynamics and indicate that TET/TDG-dependent active DNA demethylation process occurs extensively in the mammalian genome.


Assuntos
5-Metilcitosina/metabolismo , Epigênese Genética , Técnicas Genéticas , Estudo de Associação Genômica Ampla , Animais , Citosina/análogos & derivados , Citosina/metabolismo , Metilação de DNA , Reparo do DNA , Dioxigenases/metabolismo , Células-Tronco Embrionárias , Heterocromatina/química , Heterocromatina/metabolismo , Camundongos , Oxirredução , Elementos Reguladores de Transcrição , Timina DNA Glicosilase/metabolismo
2.
Nature ; 472(7342): 221-5, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21346760

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal human premature ageing disease, characterized by premature arteriosclerosis and degeneration of vascular smooth muscle cells (SMCs). HGPS is caused by a single point mutation in the lamin A (LMNA) gene, resulting in the generation of progerin, a truncated splicing mutant of lamin A. Accumulation of progerin leads to various ageing-associated nuclear defects including disorganization of nuclear lamina and loss of heterochromatin. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts obtained from patients with HGPS. HGPS-iPSCs show absence of progerin, and more importantly, lack the nuclear envelope and epigenetic alterations normally associated with premature ageing. Upon differentiation of HGPS-iPSCs, progerin and its ageing-associated phenotypic consequences are restored. Specifically, directed differentiation of HGPS-iPSCs to SMCs leads to the appearance of premature senescence phenotypes associated with vascular ageing. Additionally, our studies identify DNA-dependent protein kinase catalytic subunit (DNAPKcs, also known as PRKDC) as a downstream target of progerin. The absence of nuclear DNAPK holoenzyme correlates with premature as well as physiological ageing. Because progerin also accumulates during physiological ageing, our results provide an in vitro iPSC-based model to study the pathogenesis of human premature and physiological vascular ageing.


Assuntos
Células-Tronco Pluripotentes Induzidas/patologia , Envelhecimento/metabolismo , Envelhecimento/patologia , Envelhecimento/fisiologia , Senilidade Prematura/genética , Senilidade Prematura/patologia , Senilidade Prematura/fisiopatologia , Proteínas de Ligação ao Cálcio/análise , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Senescência Celular , Proteína Quinase Ativada por DNA/metabolismo , Epigênese Genética , Fibroblastos/patologia , Holoenzimas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lamina Tipo A , Proteínas dos Microfilamentos/análise , Modelos Biológicos , Músculo Liso Vascular/patologia , Membrana Nuclear/patologia , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Progéria/genética , Progéria/patologia , Progéria/fisiopatologia , Precursores de Proteínas/análise , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Especificidade por Substrato , Calponinas
3.
Nature ; 478(7367): 70-5, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979046

RESUMO

The exchange of the oocyte's genome with the genome of a somatic cell, followed by the derivation of pluripotent stem cells, could enable the generation of specific cells affected in degenerative human diseases. Such cells, carrying the patient's genome, might be useful for cell replacement. Here we report that the development of human oocytes after genome exchange arrests at late cleavage stages in association with transcriptional abnormalities. In contrast, if the oocyte genome is not removed and the somatic cell genome is merely added, the resultant triploid cells develop to the blastocyst stage. Stem cell lines derived from these blastocysts differentiate into cell types of all three germ layers, and a pluripotent gene expression program is established on the genome derived from the somatic cell. This result demonstrates the feasibility of reprogramming human cells using oocytes and identifies removal of the oocyte genome as the primary cause of developmental failure after genome exchange.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Adulto , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular , Metilação de DNA , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano/genética , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Humanos , Doação de Oócitos , Oócitos/crescimento & desenvolvimento , Cultura Primária de Células , Transcrição Gênica , Triploidia , Adulto Jovem
4.
Nature ; 471(7336): 63-7, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21368825

RESUMO

Defined transcription factors can induce epigenetic reprogramming of adult mammalian cells into induced pluripotent stem cells. Although DNA factors are integrated during some reprogramming methods, it is unknown whether the genome remains unchanged at the single nucleotide level. Here we show that 22 human induced pluripotent stem (hiPS) cell lines reprogrammed using five different methods each contained an average of five protein-coding point mutations in the regions sampled (an estimated six protein-coding point mutations per exome). The majority of these mutations were non-synonymous, nonsense or splice variants, and were enriched in genes mutated or having causative effects in cancers. At least half of these reprogramming-associated mutations pre-existed in fibroblast progenitors at low frequencies, whereas the rest occurred during or after reprogramming. Thus, hiPS cells acquire genetic modifications in addition to epigenetic modifications. Extensive genetic screening should become a standard procedure to ensure hiPS cell safety before clinical use.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutagênese/genética , Mutação Puntual/genética , Células Cultivadas , Análise Mutacional de DNA , Epistasia Genética/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Fases de Leitura Aberta/genética
5.
Nat Methods ; 9(3): 270-2, 2012 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-22306810

RESUMO

Targeted quantification of DNA methylation allows for interrogation of the most informative loci across many samples quickly and cost-effectively. Here we report improved bisulfite padlock probes (BSPPs) with a design algorithm to generate efficient padlock probes, a library-free protocol that dramatically reduces sample-preparation cost and time and is compatible with automation, and an efficient bioinformatics pipeline to accurately obtain both methylation levels and genotypes from sequencing of bisulfite-converted DNA.


Assuntos
Sondas de DNA/química , Sondas de DNA/genética , DNA/química , DNA/genética , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , Sulfitos/química , Sequência de Bases , Biblioteca Gênica , Dados de Sequência Molecular
6.
Proc Natl Acad Sci U S A ; 109(40): 16196-201, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22991473

RESUMO

Generation of human induced pluripotent stem cells (hiPSCs) by the expression of specific transcription factors depends on successful epigenetic reprogramming to a pluripotent state. Although hiPSCs and human embryonic stem cells (hESCs) display a similar epigenome, recent reports demonstrated the persistence of specific epigenetic marks from the somatic cell type of origin and aberrant methylation patterns in hiPSCs. However, it remains unknown whether the use of different somatic cell sources, encompassing variable levels of selection pressure during reprogramming, influences the level of epigenetic aberrations in hiPSCs. In this work, we characterized the epigenomic integrity of 17 hiPSC lines derived from six different cell types with varied reprogramming efficiencies. We demonstrate that epigenetic aberrations are a general feature of the hiPSC state and are independent of the somatic cell source. Interestingly, we observe that the reprogramming efficiency of somatic cell lines inversely correlates with the amount of methylation change needed to acquire pluripotency. Additionally, we determine that both shared and line-specific epigenetic aberrations in hiPSCs can directly translate into changes in gene expression in both the pluripotent and differentiated states. Significantly, our analysis of different hiPSC lines from multiple cell types of origin allow us to identify a reprogramming-specific epigenetic signature comprised of nine aberrantly methylated genes that is able to segregate hESC and hiPSC lines regardless of the somatic cell source or differentiation state.


Assuntos
Reprogramação Celular/fisiologia , Metilação de DNA/genética , Epigênese Genética/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Linhagem Celular , Reprogramação Celular/genética , Ilhas de CpG/genética , Epigênese Genética/genética , Epigenômica , Imunofluorescência , Biblioteca Gênica , Humanos , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
7.
Proc Natl Acad Sci U S A ; 108(16): 6537-42, 2011 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-21464322

RESUMO

Gene-corrected patient-specific induced pluripotent stem (iPS) cells offer a unique approach to gene therapy. Here, we begin to assess whether the mutational load acquired during gene correction of iPS cells is compatible with use in the treatment of genetic causes of retinal degenerative disease. We isolated iPS cells free of transgene sequences from a patient with gyrate atrophy caused by a point mutation in the gene encoding ornithine-δ-aminotransferase (OAT) and used homologous recombination to correct the genetic defect. Cytogenetic analysis, array comparative genomic hybridization (aCGH), and exome sequencing were performed to assess the genomic integrity of an iPS cell line after three sequential clonal events: initial reprogramming, gene targeting, and subsequent removal of a selection cassette. No abnormalities were detected after standard G-band metaphase analysis. However, aCGH and exome sequencing identified two deletions, one amplification, and nine mutations in protein coding regions in the initial iPS cell clone. Except for the targeted correction of the single nucleotide in the OAT locus and a single synonymous base-pair change, no additional mutations or copy number variation were identified in iPS cells after the two subsequent clonal events. These findings confirm that iPS cells themselves may carry a significant mutational load at initial isolation, but that the clonal events and prolonged cultured required for correction of a genetic defect can be accomplished without a substantial increase in mutational burden.


Assuntos
Atrofia Girata/enzimologia , Atrofia Girata/genética , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Células-Tronco Pluripotentes/enzimologia , Células Cultivadas , Marcação de Genes/métodos , Estudo de Associação Genômica Ampla , Instabilidade Genômica/genética , Atrofia Girata/patologia , Atrofia Girata/terapia , Humanos , Células-Tronco Pluripotentes/patologia , Recombinação Genética
8.
Nat Genet ; 49(4): 635-642, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263317

RESUMO

Adjacent CpG sites in mammalian genomes can be co-methylated owing to the processivity of methyltransferases or demethylases, yet discordant methylation patterns have also been observed, which are related to stochastic or uncoordinated molecular processes. We focused on a systematic search and investigation of regions in the full human genome that show highly coordinated methylation. We defined 147,888 blocks of tightly coupled CpG sites, called methylation haplotype blocks, after analysis of 61 whole-genome bisulfite sequencing data sets and validation with 101 reduced-representation bisulfite sequencing data sets and 637 methylation array data sets. Using a metric called methylation haplotype load, we performed tissue-specific methylation analysis at the block level. Subsets of informative blocks were further identified for deconvolution of heterogeneous samples. Finally, using methylation haplotypes we demonstrated quantitative estimation of tumor load and tissue-of-origin mapping in the circulating cell-free DNA of 59 patients with lung or colorectal cancer.


Assuntos
Metilação de DNA/genética , DNA/genética , Haplótipos/genética , Mapeamento Cromossômico/métodos , Ilhas de CpG/genética , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/métodos
9.
Genome Biol ; 17: 20, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26846207

RESUMO

Chromatin accessibility captures in vivo protein-chromosome binding status, and is considered an informative proxy for protein-DNA interactions. DNase I and Tn5 transposase assays require thousands to millions of fresh cells for comprehensive chromatin mapping. Applying Tn5 tagmentation to hundreds of cells results in sparse chromatin maps. We present a transposome hypersensitive sites sequencing assay for highly sensitive characterization of chromatin accessibility. Linear amplification of accessible DNA ends with in vitro transcription, coupled with an engineered Tn5 super-mutant, demonstrates improved sensitivity on limited input materials, and accessibility of small regions near distal enhancers, compared with ATAC-seq.


Assuntos
Cromatina/genética , DNA/genética , Transcrição Gênica , Linhagem Celular Tumoral , Elementos de DNA Transponíveis/genética , Desoxirribonuclease I/genética , Humanos , Análise de Sequência de RNA/métodos , Transposases/genética
10.
Science ; 352(6293): 1586-90, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27339989

RESUMO

The human brain has enormously complex cellular diversity and connectivities fundamental to our neural functions, yet difficulties in interrogating individual neurons has impeded understanding of the underlying transcriptional landscape. We developed a scalable approach to sequence and quantify RNA molecules in isolated neuronal nuclei from a postmortem brain, generating 3227 sets of single-neuron data from six distinct regions of the cerebral cortex. Using an iterative clustering and classification approach, we identified 16 neuronal subtypes that were further annotated on the basis of known markers and cortical cytoarchitecture. These data demonstrate a robust and scalable method for identifying and categorizing single nuclear transcriptomes, revealing shared genes sufficient to distinguish previously unknown and orthologous neuronal subtypes as well as regional identity and transcriptomic heterogeneity within the human brain.


Assuntos
Transcriptoma , Núcleo Celular , Córtex Cerebral , Perfilação da Expressão Gênica , Humanos , Neurônios , Análise de Sequência de RNA
11.
PLoS One ; 9(7): e99313, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25019935

RESUMO

Genetic polymorphisms can shape the global landscape of DNA methylation, by either changing substrates for DNA methyltransferases or altering the DNA binding affinity of cis-regulatory proteins. The interactions between CpG methylation and genetic polymorphisms have been previously investigated by methylation quantitative trait loci (mQTL) and allele-specific methylation (ASM) analysis. However, it remains unclear whether these approaches can effectively and comprehensively identify all genetic variants that contribute to the inter-individual variation of DNA methylation levels. Here we used three independent approaches to systematically investigate the influence of genetic polymorphisms on variability in DNA methylation by characterizing the methylation state of 96 whole blood samples in 52 parent-child trios from 22 nuclear pedigrees. We performed targeted bisulfite sequencing with padlock probes to quantify the absolute DNA methylation levels at a set of 411,800 CpG sites in the human genome. With mid-parent offspring analysis (MPO), we identified 10,593 CpG sites that exhibited heritable methylation patterns, among which 70.1% were SNPs directly present in methylated CpG dinucleotides. We determined the mQTL analysis identified 49.9% of heritable CpG sites for which regulation occurred in a distal cis-regulatory manner, and that ASM analysis was only able to identify 5%. Finally, we identified hundreds of clusters in the human genome for which the degree of variation of CpG methylation, as opposed to whether or not CpG sites were methylated, was associated with genetic polymorphisms, supporting a recent hypothesis on the genetic influence of phenotypic plasticity. These results show that cis-regulatory SNPs identified by mQTL do not comprise the full extent of heritable CpG methylation, and that ASM appears overall unreliable. Overall, the extent of genome-methylome interactions is well beyond what is detectible with the commonly used mQTL and ASM approaches, and is likely to include effects on plasticity.


Assuntos
Metilação de DNA , Genoma Humano/genética , Núcleo Familiar , Linhagem , Ilhas de CpG/genética , Feminino , Genômica , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
12.
Elife ; 2: e01256, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24381246

RESUMO

In mammals, numerous autosomal genes are subject to mitotically stable monoallelic expression (MAE), including genes that play critical roles in a variety of human diseases. Due to challenges posed by the clonal nature of MAE, very little is known about its regulation; in particular, no molecular features have been specifically linked to MAE. In this study, we report an approach that distinguishes MAE genes in human cells with great accuracy: a chromatin signature consisting of chromatin marks associated with active transcription (H3K36me3) and silencing (H3K27me3) simultaneously occurring in the gene body. The MAE signature is present in ∼20% of ubiquitously expressed genes and over 30% of tissue-specific genes across cell types. Notably, it is enriched among key developmental genes that have bivalent chromatin structure in pluripotent cells. Our results open a new approach to the study of MAE that is independent of polymorphisms, and suggest that MAE is linked to cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.01256.001.


Assuntos
Alelos , Cromatina/genética , Inativação Gênica , Humanos , Transcrição Gênica
13.
Nat Biotechnol ; 31(12): 1126-32, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24213699

RESUMO

Genome sequencing of single cells has a variety of applications, including characterizing difficult-to-culture microorganisms and identifying somatic mutations in single cells from mammalian tissues. A major hurdle in this process is the bias in amplifying the genetic material from a single cell, a procedure known as polymerase cloning. Here we describe the microwell displacement amplification system (MIDAS), a massively parallel polymerase cloning method in which single cells are randomly distributed into hundreds to thousands of nanoliter wells and their genetic material is simultaneously amplified for shotgun sequencing. MIDAS reduces amplification bias because polymerase cloning occurs in physically separated, nanoliter-scale reactors, facilitating the de novo assembly of near-complete microbial genomes from single Escherichia coli cells. In addition, MIDAS allowed us to detect single-copy number changes in primary human adult neurons at 1- to 2-Mb resolution. MIDAS can potentially further the characterization of genomic diversity in many heterogeneous cell populations.


Assuntos
Separação Celular/instrumentação , Mapeamento Cromossômico/instrumentação , Clonagem Molecular/métodos , DNA Polimerase Dirigida por DNA/genética , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Nanotecnologia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanotecnologia/métodos
14.
Nat Commun ; 4: 1382, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340422

RESUMO

Recent studies indicate that human-induced pluripotent stem cells contain genomic structural variations and point mutations in coding regions. However, these studies have focused on fibroblast-derived human induced pluripotent stem cells, and it is currently unknown whether the use of alternative somatic cell sources with varying reprogramming efficiencies would result in different levels of genetic alterations. Here we characterize the genomic integrity of eight human induced pluripotent stem cell lines derived from five different non-fibroblast somatic cell types. We show that protein-coding mutations are a general feature of the human induced pluripotent stem cell state and are independent of somatic cell source. Furthermore, we analyse a total of 17 point mutations found in human induced pluripotent stem cells and demonstrate that they do not generally facilitate the acquisition of pluripotency and thus are not likely to provide a selective advantage for reprogramming.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Fases de Leitura Aberta/genética , Alelos , Sequência de Bases , Linhagem Celular , Fibroblastos/citologia , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Dados de Sequência Molecular , Mutação Puntual/genética , Retroviridae , Análise de Sequência de RNA
15.
Cell Stem Cell ; 8(6): 688-94, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21596650

RESUMO

Combination of stem cell-based approaches with gene-editing technologies represents an attractive strategy for studying human disease and developing therapies. However, gene-editing methodologies described to date for human cells suffer from technical limitations including limited target gene size, low targeting efficiency at transcriptionally inactive loci, and off-target genetic effects that could hamper broad clinical application. To address these limitations, and as a proof of principle, we focused on homologous recombination-based gene correction of multiple mutations on lamin A (LMNA), which are associated with various degenerative diseases. We show that helper-dependent adenoviral vectors (HDAdVs) provide a highly efficient and safe method for correcting mutations in large genomic regions in human induced pluripotent stem cells and can also be effective in adult human mesenchymal stem cells. This type of approach could be used to generate genotype-matched cell lines for disease modeling and drug discovery and potentially also in therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Lamina Tipo A/genética , Mutação , Linhagem Celular , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa