Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(27): 10039-10052, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37377020

RESUMO

Ambient fine particulate matter (PM2.5) has severe adverse health impacts, making it crucial to reduce PM2.5 exposure for public health. Meteorological and emissions factors, which considerably affect the PM2.5 concentrations in the atmosphere, vary substantially under different climate change scenarios. In this work, global PM2.5 concentrations from 2021 to 2100 were generated by combining the deep learning technique, reanalysis data, emission data, and bias-corrected CMIP6 future climate scenario data. Based on the estimated PM2.5 concentrations, the future premature mortality burden was assessed using the Global Exposure Mortality Model. Our results reveal that SSP3-7.0 scenario is associated with the highest PM2.5 exposure, with a global concentration of 34.5 µg/m3 in 2100, while SSP1-2.6 scenario has the lowest exposure, with an estimated of 15.7 µg/m3 in 2100. PM2.5-related deaths for individuals under 75 years will decrease by 16.3 and 10.5% under SSP1-2.6 and SSP5-8.5, respectively, from 2030s to 2090s. However, premature mortality for elderly individuals (>75 years) will increase, causing the contrary trends of improved air quality and increased total PM2.5-related deaths in the four SSPs. Our results emphasize the need for stronger air pollution mitigation measures to offset the future burden posed by population age.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Idoso , Poluentes Atmosféricos/análise , Mudança Climática , Poluição do Ar/análise , Material Particulado/análise , Atmosfera/análise , Mortalidade Prematura
2.
Chaos ; 30(11): 113123, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33261323

RESUMO

In this study, we focus on the fractal property of recurrence networks constructed from the two-dimensional fractional Brownian motion (2D fBm), i.e., the inter-system recurrence network, the joint recurrence network, the cross-joint recurrence network, and the multidimensional recurrence network, which are the variants of classic recurrence networks extended for multiple time series. Generally, the fractal dimension of these recurrence networks can only be estimated numerically. The numerical analysis identifies the existence of fractality in these constructed recurrence networks. Furthermore, it is found that the numerically estimated fractal dimension of these networks can be connected to the theoretical fractal dimension of the 2D fBm graphs, because both fractal dimensions are piecewisely associated with the Hurst exponent H in a highly similar pattern, i.e., a linear decrease (if H varies from 0 to 0.5) followed by an inversely proportional-like decay (if H changes from 0.5 to 1). Although their fractal dimensions are not exactly identical, their difference can actually be deciphered by one single parameter with the value around 1. Therefore, it can be concluded that these recurrence networks constructed from the 2D fBms must inherit some fractal properties of its associated 2D fBms with respect to the fBm graphs.

3.
Sci Total Environ ; 871: 161951, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737010

RESUMO

As major air pollutants, nitrogen oxides (NOx, mainly comprising NO and NO2) not only have adverse effects on human health but also contribute to the formation of secondary pollutants, such as ozone and particulate nitrate. To acquire reasonable NOx simulation results for further analysis, a reasonable emission inventory is needed for three-dimensional chemical transport models (3D-CTMs). In this study, a comprehensive emission adjustment framework for NOx emission, which integrates the simulation results of the 3D-CTM, surface NO2 measurements, the three-dimensional variational data assimilation method, and an ensemble back propagation neural network, was proposed and applied to correct NOx emissions over China for the summers of 2015 and 2020. Compared with the simulation using prior NOx emissions, the root-mean-square error, normalized mean error, and normalized mean bias decreased by approximately 40 %, 40 %, and 60 % in NO2 simulation using posterior NOx emissions corrected by the framework proposed in this work. Compared with the emissions for 2015, the NOx emission generally decreased by an average of 5 % in the simulation domain for 2020, especially in Henan and Anhui provinces, where the percentage reductions reached 24 % and 19 %, respectively. The proposed framework is sufficiently flexible to correct emissions in other periods and regions. The framework can provide reliable and up-to-date emission information and can thus contribute to both scientific research and policy development relating to NOx pollution.

4.
Sci Rep ; 11(1): 1751, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462354

RESUMO

Seventy-percent of the terrestrial area of Hong Kong is covered by vegetation and 40% is protected as the Country Park. The above-ground biomass (AGB) acts as reliable source of carbon sink and while Hong Kong has recognized the importance of carbon sink in forest and urged for forest protection in the latest strategic plan, yet no study has been conducted on assessing the baseline of terrestrial AGB and its carbon storage. This study compared and estimated the AGB by the traditional allometric modeling and the Light Detection and Ranging (LiDAR) plot metrics at plot-level in a subtropical forest of Hong Kong. The study has tested five allometric models which were developed from pantropical regions, subtropical areas and locally. The best model was then selected as the dependent variable to develop the LiDAR-derived AGB model. The raw LiDAR point cloud was pre-processed to normalized height point cloud and hence generating the LiDAR metric as independent variables for the model development. Regression models were used to estimate AGB at various plot sizes (i.e., in 10-m, 5-m and 2.5-m radius). The models were then evaluated statistically and validated by bootstrapping and leave-one-out cross validation (LOOCV). The results indicated the LiDAR metric derived from larger plot size outperformed the smaller plot size, with model R2 of 0.864 and root-mean-square-error (RMSE) of 37.75 kg/ha. It also found that pantropical model was comparable to a site-specific model when including the bioclimatic variable in subtropical forests. This study provides the approach for delineating the baseline of terrestrial above-ground biomass and carbon stock in subtropical forests upon an appropriate plot size is being deployed.

5.
Sci Total Environ ; 759: 143513, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33246725

RESUMO

Air pollution exerts serious impacts on human health and sustainable development. The accurate forecasting of air quality can guide the formulation of mitigation strategies and reduce exposure to air pollution. It is beneficial to explicitly consider both spatial and temporal information of multiple factors, e.g., the meteorological data, in the forecasting of air pollutant concentrations. The temporal information of relevant factors collected at a location should be considered for forecasting. In addition, these factors recorded at other locations may also provide useful information. Existing methods utilizing the spatio-temporal information of these relevant factors are usually based on some very complicated frameworks. In this study, we propose a novel and simple spatial attention-based long short-term memory (SA-LSTM) that combines LSTM and a spatial attention mechanism to adaptively utilize the spatio-temporal information of multiple factors for forecasting air pollutant concentrations. Specifically, the SA-LSTM employs gated recurrent connections to extract temporal information of multiple factors at individual locations, and the spatial attention mechanism to spatially fuse the temporal information extracted at these locations. This method is effective and applicable to forecast any air pollutant concentrations when spatio-temporal information of relevant factors has to be utilized. To validate the effectiveness of the proposed SA-LSTM, we apply it to forecast the daily air quality in Hong Kong, a high density city with peculiar cityscapes, by using the air quality and meteorological data. Empirical results demonstrate that the proposed SA-LSTM outperforms the conventional models with respect to one-day forecast accuracy, especially for extreme values. Moreover, the attention weights learned by the SA-LSTM can identify hotspots of the air pollution process for reducing computational complexity of forecasting and provide a better understanding of the underlying mechanism of air pollution.

6.
IEEE Trans Syst Man Cybern B Cybern ; 38(4): 1111-22, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18632401

RESUMO

A new method, which is called decomposition-composition (D-C) method, is proposed for the nonlinear dimensionality reduction (NLDR) of data lying on the multicluster manifold. The main idea is first to decompose a given data set into clusters and independently calculate the low-dimensional embeddings of each cluster by the decomposition procedure. Based on the intercluster connections, the embeddings of all clusters are then composed into their proper positions and orientations by the composition procedure. Different from other NLDR methods for multicluster data, which consider associatively the intracluster and intercluster information, the D-C method capitalizes on the separate employment of the intracluster neighborhood structures and the intercluster topologies for effective dimensionality reduction. This, on one hand, isometrically preserves the rigid-body shapes of the clusters in the embedding process and, on the other hand, guarantees the proper locations and orientations of all clusters. The theoretical arguments are supported by a series of experiments performed on the synthetic and real-life data sets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically analyzed and experimentally demonstrated. Related strategies for automatic parameter selection are also examined.


Assuntos
Algoritmos , Inteligência Artificial , Análise por Conglomerados , Modelos Teóricos , Dinâmica não Linear , Reconhecimento Automatizado de Padrão/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa