Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Stem Cells ; 32(9): 2430-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24805247

RESUMO

We have recently reported that therapeutic mesenchymal stromal cells (MSCs) have low engraftment and trigger the instant blood mediated inflammatory reaction (IBMIR) after systemic delivery to patients, resulting in compromised cell function. In order to optimize the product, we compared the immunomodulatory, blood regulatory, and therapeutic properties of freeze-thawed and freshly harvested cells. We found that freeze-thawed MSCs, as opposed to cells harvested from continuous cultures, have impaired immunomodulatory and blood regulatory properties. Freeze-thawed MSCs demonstrated reduced responsiveness to proinflammatory stimuli, an impaired production of anti-inflammatory mediators, increased triggering of the IBMIR, and a strong activation of the complement cascade compared to fresh cells. This resulted in twice the efficiency in lysis of thawed MSCs after 1 hour of serum exposure. We found a 50% and 80% reduction in viable cells with freshly detached as opposed to thawed in vitro cells, indicating a small benefit for fresh cells. In evaluation of clinical response, we report a trend that fresh cells, and cells of low passage, demonstrate improved clinical outcome. Patients treated with freshly harvested cells in low passage had a 100% response rate, twice the response rate of 50% observed in a comparable group of patients treated with freeze-thawed cells at higher passage. We conclude that cryobanked MSCs have reduced immunomodulatory and blood regulatory properties directly after thawing, resulting in faster complement-mediated elimination after blood exposure. These changes seem to be paired by differences in therapeutic efficacy in treatment of immune ailments after hematopoietic stem cell transplantation.


Assuntos
Criopreservação/métodos , Imunoterapia/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Adolescente , Adulto , Idoso , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Criança , Pré-Escolar , Feminino , Humanos , Imunomodulação , Imunofenotipagem/métodos , Lactente , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
2.
Stem Cells ; 30(7): 1565-74, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22522999

RESUMO

Multipotent mesenchymal stromal cells (MSCs) are tested in numerous clinical trials. Questions have been raised concerning fate and function of these therapeutic cells after systemic infusion. We therefore asked whether culture-expanded human MSCs elicit an innate immune attack, termed instant blood-mediated inflammatory reaction (IBMIR), which has previously been shown to compromise the survival and function of systemically infused islet cells and hepatocytes. We found that MSCs expressed hemostatic regulators similar to those produced by endothelial cells but displayed higher amounts of prothrombotic tissue/stromal factors on their surface, which triggered the IBMIR after blood exposure, as characterized by formation of blood activation markers. This process was dependent on the cell dose, the choice of MSC donor, and particularly the cell-passage number. Short-term expanded MSCs triggered only weak blood responses in vitro, whereas extended culture and coculture with activated lymphocytes increased their prothrombotic properties. After systemic infusion to patients, we found increased formation of blood activation markers, but no formation of hyperfibrinolysis marker D-dimer or acute-phase reactants with the currently applied dose of 1.0-3.0 × 10(6) cells per kilogram. Culture-expanded MSCs trigger the IBMIR in vitro and in vivo. Induction of IBMIR is dose-dependent and increases after prolonged ex vivo expansion. Currently applied doses of low-passage clinical-grade MSCs elicit only minor systemic effects, but higher cell doses and particularly higher passage cells should be handled with care. This deleterious reaction can compromise the survival, engraftment, and function of these therapeutic cells.


Assuntos
Células-Tronco Mesenquimais/citologia , Terapia Baseada em Transplante de Células e Tecidos , Células Endoteliais/citologia , Humanos , Células-Tronco Mesenquimais/imunologia , Trombose/sangue
3.
PLoS One ; 9(1): e85040, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454787

RESUMO

Investigation into predictors for treatment outcome is essential to improve the clinical efficacy of therapeutic multipotent mesenchymal stromal cells (MSCs). We therefore studied the possible harmful impact of immunogenic ABO blood groups antigens - genetically governed antigenic determinants - at all given steps of MSC-therapy, from cell isolation and preparation for clinical use, to final recipient outcome. We found that clinical MSCs do not inherently express or upregulate ABO blood group antigens after inflammatory challenge or in vitro differentiation. Although antigen adsorption from standard culture supplements was minimal, MSCs adsorbed small quantities of ABO antigen from fresh human AB plasma (ABP), dependent on antigen concentration and adsorption time. Compared to cells washed in non-immunogenic human serum albumin (HSA), MSCs washed with ABP elicited stronger blood responses after exposure to blood from healthy O donors in vitro, containing high titers of ABO antibodies. Clinical evaluation of hematopoietic stem cell transplant (HSCT) recipients found only very low titers of anti-A/B agglutination in these strongly immunocompromised patients at the time of MSC treatment. Patient analysis revealed a trend for lower clinical response in blood group O recipients treated with ABP-exposed MSC products, but not with HSA-exposed products. We conclude, that clinical grade MSCs are ABO-neutral, but the ABP used for washing and infusion of MSCs can contaminate the cells with immunogenic ABO substance and should therefore be substituted by non-immunogenic HSA, particularly when cells are given to immunocompentent individuals.


Assuntos
Sistema ABO de Grupos Sanguíneos/imunologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Sistema ABO de Grupos Sanguíneos/sangue , Sistema ABO de Grupos Sanguíneos/genética , Adolescente , Adsorção , Adulto , Idoso , Anticorpos/imunologia , Células Cultivadas , Criança , Metilação de DNA/genética , Genótipo , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resultado do Tratamento , Regulação para Cima
4.
Ups J Med Sci ; 116(1): 26-33, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21070093

RESUMO

INTRODUCTION: The complement system is an essential part of the immune system of vertebrates. The central event of the complement activation cascade is the sequential proteolytic activation of C3, which is associated with profound alterations in the molecule's structure and conformation and is responsible for triggering most of the biological effects of complement. MATERIAL AND METHODS: Here, we have studied the conformation of C3 fragments deposited onto an IgG-coated surface from human serum during complement activation, using a set of unique monoclonal antibodies (mAbs) that are all specific for the C3dg portion of bound iC3b. RESULTS; We were able to identify two conformational forms of target-bound iC3b: the first recognized by mAb 7D18.1, and the second by mAb 7D323.1. The first species of iC3b bound recombinant complement receptor 1 (CR1), while the second bound CR2. Since CR1 and CR2 are expressed by different subsets of leukocytes, this difference in receptor-binding capacity implies that there is a biological difference between the two forms of surface-bound iC3b. CONCLUSION: We propose that mAbs 7D18.1 and 7D323.1 can act as surrogate markers for CR1 and CR2, respectively, and that they may be useful tools for studying the immune complexes that are generated in various autoimmune diseases.


Assuntos
Anticorpos Monoclonais/metabolismo , Complemento C3b/metabolismo , Receptores de Complemento 3b/metabolismo , Receptores de Complemento 3d/metabolismo , Adsorção , Western Blotting , Complemento C3/metabolismo , Complemento C3b/química , Humanos , Imunoglobulina G/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa