RESUMO
Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure-property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series of two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. We present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.
RESUMO
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
RESUMO
X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. Here, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. The calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach--a capability critical for advancing nanofocused x-ray diffraction microscopy.
RESUMO
Polymer-assisted deposition (PAD) is one of the chemical solution deposition methods which have been successfully used to grow films, form coatings, and synthesize nanostructured materials. In comparison with other conventional solution-based deposition techniques, PAD differs in its use of water-soluble polymers in the solution that prevent the metal ions from unwanted chemical reactions and keep the solution stable. Furthermore, filtration to remove non-coordinated cations and anions in the PAD process ensures well controlled nucleation, which enables the growth of high quality epitaxial films with desired structural and physical properties. The precursor solution is prepared by mixing water-soluble polymer(s) with salt(s). Thermal treatment of the precursor films in a controlled environment leads to the formation of desired materials. Using BaTiO3 grown on SrTiO3 and LaMnO3 on LaAlO3 as model systems, we show the effect of filtration on the nucleation and growth of epitaxial complex metal-oxide films based on the PAD process.
RESUMO
The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode ãMsã = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.
RESUMO
We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.
RESUMO
We imaged nanoscale lattice strain in a multilayer semiconductor device prototype with a new X-ray technique, nanofocused Bragg projection ptychography. Applying this technique to the epitaxial stressor layer of a SiGe-on-SOI structure, we measured the internal lattice behavior in a targeted region of a single device and demonstrated that its internal strain profile consisted of two competing lattice distortions. These results provide the strongest nondestructive test to date of continuum modeling predictions of nanoscale strain distributions.
RESUMO
The availability of ultrafast pulses of coherent hard x rays from the Linac Coherent Light Source opens new opportunities for studies of atomic-scale dynamics in amorphous materials. Here, we show that single ultrafast coherent x-ray pulses can be used to observe the speckle contrast in the high-angle diffraction from liquid Ga and glassy Ni(2)Pd(2)P and B(2)O(3). We determine the thresholds above which the x-ray pulses disturb the atomic arrangements. Furthermore, high contrast speckle is observed in scattering patterns from the glasses integrated over many pulses, demonstrating that the source and optics are sufficiently stable for x-ray photon correlation spectroscopy studies of dynamics over a wide range of time scales.
Assuntos
Vidro/química , Modelos Teóricos , Difração de Raios X/métodos , Compostos de Boro/química , Gálio/química , Níquel/química , Paládio/química , Fósforo/química , FótonsRESUMO
We measured the transverse and longitudinal coherence properties of the Linac Coherent Light Source (LCLS) at SLAC in the hard x-ray regime at 9 keV photon energy on a single shot basis. Speckle patterns recorded in the forward direction from colloidal nanoparticles yielded the transverse coherence properties of the focused LCLS beam. Speckle patterns from a gold nanopowder recorded with atomic resolution allowed us to measure the shot-to-shot variations of the spectral properties of the x-ray beam. The focused beam is in the transverse direction fully coherent with a mode number close to 1. The average number of longitudinal modes behind the Si(111) monochromator is about 14.5 and the average coherence time τ(c)=(2.0±1.0) fc. The data suggest a mean x-ray pulse duration of (29±14) fs behind the monochromator for (100±14) fc electron pulses.
Assuntos
Ouro/química , Luz , Nanopartículas Metálicas/química , Modelos Teóricos , Nanoestruturas/química , Fótons , Elétrons , Aceleradores de Partículas , Espalhamento de Radiação , Raios XRESUMO
We present a synchrotron x-ray study of the equilibrium polarization structure of ultrathin PbTiO(3) films on SrRuO(3) electrodes epitaxially grown on SrTiO(3) (001) substrates, as a function of temperature and the external oxygen partial pressure (pO(2)) controlling their surface charge compensation. We find that the ferroelectric Curie temperature (T(C)) varies with pO(2) and has a minimum at the intermediate pO(2), where the polarization below T(C) changes sign. The experiments are in qualitative agreement with a model based on Landau theory that takes into account the interaction of the phase transition with the electrochemical equilibria for charged surface species. The paraelectric phase is stabilized at intermediate pO(2) when the concentrations of surface species are insufficient to compensate either polar orientation.
RESUMO
To study equilibrium changes in composition, valence, and electronic structure near the surface and into the bulk, we demonstrate the use of a new approach, total-reflection inelastic x-ray scattering, as a sub-keV spectroscopy capable of depth profiling chemical changes in thin films with nanometer resolution. By comparing data acquired under total x-ray reflection and penetrating conditions, we are able to separate the O K-edge spectra from a 10 nm La0.6Sr0.4CoO3 thin film from that of the underlying SrTiO3 substrate. With a smaller wavelength probe than comparable soft x-ray absorption measurements, we also describe the ability to easily access dipole-forbidden final states, using the dramatic evolution of the La N4,5 edge with momentum transfer as an example.
Assuntos
Cobalto/química , Lantânio/química , Óxidos/química , Estrôncio/química , Difração de Raios X , Elasticidade , Titânio/químicaRESUMO
We demonstrate the dramatic effect of film thickness on the ferroelectric phase transition temperature Tc in strained BaTiO3 films grown on SrTiO3 substrates. Using variable-temperature ultraviolet Raman spectroscopy enables measuring Tc in films as thin as 1.6 nm, and a film thickness variation from 1.6 to 10 nm leads to Tc tuning from 70 to about 925 K. Raman data are consistent with synchrotron x-ray scattering results, which indicate the presence of 180 degrees domains below Tc, and thermodynamic phase-field model calculations of Tc as a function of thickness.
RESUMO
One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from very low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.
RESUMO
In this paper we describe a setup for x-ray scattering experiments on complex fluids using a liquid jet. The setup supports Small and Wide Angle X-ray Scattering (SAXS/WAXS) geometries. The jet is formed by a gas-dynamic virtual nozzle (GDVN) allowing for diameters ranging between 1 µm and 20 µm at a jet length of several hundred µm. To control jet properties such as jet length, diameter, or flow rate, the instrument is equipped with several diagnostic tools. Three microscopes are installed to quantify jet dimensions and stability in situ. The setup has been used at several beamlines performing both SAXS and WAXS experiments. As a typical example we show an experiment on a colloidal dispersion in a liquid jet at the X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source free-electron laser.
RESUMO
Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques.
RESUMO
In the growing field of in operando and in situ X-ray experiments, there exists a large disparity in the types of environments and equipment to control them. This situation makes it challenging to conduct multiple experiments with a single mechanical interface to the diffractometer. Here, we describe the design and implementation of a modular instrument mounting system that can be installed on a standard six-circle diffractometer (e.g., 5021 Huber GmbH). This new system allows for the rapid changeover of different chambers and sample heaters and permits accurate sample positioning (x, y, z, and azimuthal rotation) without rigid coupling to the chamber body. Isolation of the sample motion from the chamber enclosure is accomplished through a combination of custom rotary seals and bellows. Control of the pressure and temperature has been demonstrated in the ranges of 10(-6)-10(3) Torr and 25°C-900°C, respectively. We have utilized the system with several different modular instruments. As an example, we provide in situ sputtering results, where the growth dynamics of epitaxial LaGaO3 thin films on (001) SrTiO3 substrates were investigated.
RESUMO
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
RESUMO
According to recent experiments and predictions, the orientation of the polarization at the surface of a ferroelectric material can affect its surface chemistry. Here we demonstrate the converse effect: the chemical environment can control the polarization orientation in a ferroelectric film. In situ synchrotron x-ray scattering measurements show that high or low oxygen partial pressure induces outward or inward polarization, respectively, in an ultrathin PbTiO3 film. Ab initio calculations provide insight into surface structure changes observed during chemical switching.
RESUMO
We report observations of self-sustaining spatiotemporal chemical oscillations during metal-organic chemical vapor deposition of InN onto GaN. Under constant supply of vapor precursors trimethylindium and NH3, the condensed-phase cycles between crystalline islands of InN and elemental In droplets. Propagating fronts between regions of InN and In occur with linear, circular, and spiral geometries. The results are described by a model in which the nitrogen activity produced by surface-catalyzed NH3 decomposition varies with the exposed surface areas of GaN, InN, and In.
Assuntos
Índio/química , Modelos Químicos , Compostos de Nitrogênio/química , Gálio/química , Modelos Biológicos , Volatilização , Difração de Raios XRESUMO
Femtosecond time-resolved small and wide angle x-ray diffuse scattering techniques are applied to investigate the ultrafast nucleation processes that occur during the ablation process in semiconducting materials. Following intense optical excitation, a transient liquid state of high compressibility characterized by large-amplitude density fluctuations is observed and the buildup of these fluctuations is measured in real time. Small-angle scattering measurements reveal snapshots of the spontaneous nucleation of nanoscale voids within a metastable liquid and support theoretical predictions of the ablation process.