Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Test Eval ; 48(1)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36147246

RESUMO

Personal protective equipment (PPE), such as gowns used in the latest Ebola outbreak in Western Africa, are critical in preventing the spread of deadly diseases. Appropriate test systems and test soils are needed to adequately evaluate PPE. ASTM F903, Standard Test Method for Resistance of Materials Used in Protective Clothing to Penetration by Liquid, has been used for decades to test fabrics' resistance to liquid penetration. However, this test apparatus requires at least 60 mL of test solutions, is labor intensive, and has problems with leakage around the gaskets. We compared the F903 test apparatus to a modified dot-blot apparatus to evaluate the visual penetration of a blood test soil. A series of commercially available gowns and drapes were tested in each apparatus. Using blood test soil at 2 psi, there was no statistically significant difference between the two methods except for in one gown. By comparing this gown in the ASTM test apparatus with and without a screen, the particular screen selected did not account for the difference between the dot-blot and F903 apparatuses; however, it is conceivable that a particular screen/fabric combination could account for this difference. The modified dot-blot apparatus was evaluated using three different test solutions: blood, vomit, and a labeled protein (goat anti-rabbit immunoglobulin G-horseradish peroxidase [GaR IgG-HRP]) in a blood test soil solution. This testing revealed significant difference in penetration for some of the PPE garments. The modified dot-blot had several large advantages over the ASTM apparatus-over six times less specimen volume and no edge or gasket leakage. In addition, nitrocellulose can be easily incorporated into the modified dot-blot apparatus, enabling the trapping of viruses and proteins that penetrate PPE-thus permitting the use of antibodies to quickly and sensitively detect penetration.

2.
J Test Eval ; Volume 47(Iss 2): 1635-1644, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37207023

RESUMO

The American Society for Testing and Material (ASTM International) F1670 test method was based on research involving transmission of bloodborne pathogens (Hepatitis B, Hepatitis C, and HIV) in the 1980s. The test method details the measurement of synthetic blood penetration through garments. A key parameter affecting penetration is synthetic blood surface tension which is measured via du Noüy ring tensiometer. However, little is known about the sources of variation impacting surface tension measurements. In this study, the synthetic blood used for ASTM F1670 was evaluated from within the ASTM F903 test apparatus and with two mixing treatments. Measurements were compared against two outside laboratories and with two alternate tensiometric methods (pendant drop and capillary rise). It was found that using the methods specified in the ASTM F1670 test method, surface tension of the synthetic blood was not 40-44 dynes/cm as was expected. The surface tension was initially above 50 dynes/cm and declined to below 40 dynes/cm after 60 minutes. The surface tension within the penetration cell was relatively constant over time, showing that the surface tension measurements outside the penetration cell are not indicative of the surface tension within the apparatus during the test. Shaking the synthetic blood, a mixing procedure detailed in the ASTM F1670 test method, increased the surface tension. The increase was greatest in a container having more airspace. Du Noüy ring measurements by NIOSH compared to external labs were within 15%. Testing with alternate methods showed that the "open-to-atmosphere" methods (ring and drop) began lower and declined rapidly when compared to the "closed-to-atmosphere" method (capillary). Results of this research will help amend the ASTM F1670 standard to better characterize the measurement and handling of synthetic blood used in the ASTM F1670 test and to provide a framework for consideration of test fluid used in future ASTM standards.

3.
PLoS One ; 16(3): e0247166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657154

RESUMO

Nontuberculous mycobacteria (NTM) are waterborne pathogens commonly found in building water systems where they are a primary concern to vulnerable patient populations and can cause severe disease. The recovery of NTM from environmental samples can be a laborious undertaking and current pre-treatment methods and selective media lack sensitivity. We explored the use of the highly selective Rapidly Growing Mycobacteria (RGM) medium for culturing NTM from environmental water samples compared to existing methods. In total, 223 environmental water samples, including potable and non-potable water, were cultured for NTM using three culture media. In addition to direct culture on RGM medium, each sample was cultured on Middlebrook 7H10 medium and Mitchison 7H11 medium after pre-treatment with 0.2M KCl-HCl. Additionally, 33 distinct species of NTM were inoculated onto RGM medium and 7H10 medium in parallel to directly compare their growth. The use of RGM medium alone without pre-treatment provided a sensitivity (91%) comparable to that offered by culture on both 7H10 and 7H11 with acid pretreatment (combined sensitivity; 86%) with significantly less overgrowth and interference from other organisms on RGM medium. The average concentration of NTM observed on RGM medium alone was comparable to or greater than the NTM concentration on either medium alone or combined. Thirty-three species were examined in parallel and all tested strains of 27 of these species successfully grew on RGM medium, including 19 of 21 from the CDC's healthcare-associated infections species list. RGM medium was successful at recovering environmental NTM without a pre-treatment, greatly reducing labor and materials required to process samples. Simplification of culture processing for environmental NTM will allow for a better assessment of their presence in building water systems and the potential for reduced exposure of susceptible populations.


Assuntos
Micobactérias não Tuberculosas , Microbiologia da Água , Humanos , Micobactérias não Tuberculosas/classificação , Micobactérias não Tuberculosas/crescimento & desenvolvimento , Micobactérias não Tuberculosas/isolamento & purificação
4.
PLoS One ; 14(2): e0211827, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30735524

RESUMO

Protective clothing manufacturers routinely test their products for resistance to liquid and viral penetration. Several of the test methods specified by the American Society for Testing and Materials (ASTM) and the International Organization for Standardization (ISO) for penetration testing produce binary results (i.e. pass or fail), deliver imprecise pressure regulation, and do not record the location at which penetration events occur. Instead, our approach measures a continuous variable (time of penetration) during a slow and continuous increase of hydrostatic pressure and retains the location of penetration events. Using a fluorescent dye to enhance visual detection, we evaluate temporal and spatial patterns of penetration events. We then compare the time of liquid penetration with the time of penetration of two bacteriophages (Phi-X174 and MS2). For the fabric tested, the mean viral penetration occurred 0.29 minutes earlier than liquid penetration when solved by logistic regression. The breakthrough time of MS2 was not different from the Phi-X174 bacteriophage. The time of liquid penetration was a latent indicator of the time of viral penetration.


Assuntos
Bacteriófago phi X 174 , Levivirus , Teste de Materiais , Roupa de Proteção , Têxteis , Corantes Fluorescentes , Humanos , Pressão Hidrostática , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa