RESUMO
M-CSA (Mechanism and Catalytic Site Atlas) is a database of enzyme active sites and reaction mechanisms that can be accessed at www.ebi.ac.uk/thornton-srv/m-csa. Our objectives with M-CSA are to provide an open data resource for the community to browse known enzyme reaction mechanisms and catalytic sites, and to use the dataset to understand enzyme function and evolution. M-CSA results from the merging of two existing databases, MACiE (Mechanism, Annotation and Classification in Enzymes), a database of enzyme mechanisms, and CSA (Catalytic Site Atlas), a database of catalytic sites of enzymes. We are releasing M-CSA as a new website and underlying database architecture. At the moment, M-CSA contains 961 entries, 423 of these with detailed mechanism information, and 538 with information on the catalytic site residues only. In total, these cover 81% (195/241) of third level EC numbers with a PDB structure, and 30% (840/2793) of fourth level EC numbers with a PDB structure, out of 6028 in total. By searching for close homologues, we are able to extend M-CSA coverage of PDB and UniProtKB to 51 993 structures and to over five million sequences, respectively, of which about 40% and 30% have a conserved active site.
Assuntos
Bases de Dados de Proteínas , Enzimas/química , Enzimas/metabolismo , Biocatálise , Domínio Catalítico , Curadoria de Dados , Humanos , Internet , Interface Usuário-Computador , NavegadorRESUMO
The development of novel therapeutics is urgently required for diseases where existing treatments are failing due to the emergence of resistance. This is particularly pertinent for parasitic infections of the tropics and sub-tropics, referred to collectively as neglected tropical diseases, where the commercial incentives to develop new drugs are weak. One such disease is schistosomiasis, a highly prevalent acute and chronic condition caused by a parasitic helminth infection, with three species of the genus Schistosoma infecting humans. Currently, a single 40-year old drug, praziquantel, is available to treat all infective species, but its use in mass drug administration is leading to signs of drug-resistance emerging. To meet the challenge of developing new therapeutics against this disease, we developed an innovative computational drug repurposing pipeline supported by phenotypic screening. The approach highlighted several protein kinases as interesting new biological targets for schistosomiasis as they play an essential role in many parasite's biological processes. Focusing on this target class, we also report the first elucidation of the kinome of Schistosoma japonicum, as well as updated kinomes of S. mansoni and S. haematobium. In comparison with the human kinome, we explored these kinomes to identify potential targets of existing inhibitors which are unique to Schistosoma species, allowing us to identify novel targets and suggest approved drugs that might inhibit them. These include previously suggested schistosomicidal agents such as bosutinib, dasatinib, and imatinib as well as new inhibitors such as vandetanib, saracatinib, tideglusib, alvocidib, dinaciclib, and 22 newly identified targets such as CHK1, CDC2, WEE, PAKA, MEK1. Additionally, the primary and secondary targets in Schistosoma of those approved drugs are also suggested, allowing for the development of novel therapeutics against this important yet neglected disease.
Assuntos
Biologia Computacional/métodos , Reposicionamento de Medicamentos/métodos , Inibidores de Proteínas Quinases/farmacologia , Schistosoma/efeitos dos fármacos , Esquistossomicidas/farmacologia , Animais , Bases de Dados de Proteínas , Reprodutibilidade dos TestesRESUMO
FunTree is a resource that brings together protein sequence, structure and functional information, including overall chemical reaction and mechanistic data, for structurally defined domain superfamilies. Developed in tandem with the CATH database, the original FunTree contained just 276 superfamilies focused on enzymes. Here, we present an update of FunTree that has expanded to include 2340 superfamilies including both enzymes and proteins with non-enzymatic functions annotated by Gene Ontology (GO) terms. This allows the investigation of how novel functions have evolved within a structurally defined superfamily and provides a means to analyse trends across many superfamilies. This is done not only within the context of a protein's sequence and structure but also the relationships of their functions. New measures of functional similarity have been integrated, including for enzymes comparisons of overall reactions based on overall bond changes, reaction centres (the local environment atoms involved in the reaction) and the sub-structure similarities of the metabolites involved in the reaction and for non-enzymes semantic similarities based on the GO. To identify and highlight changes in function through evolution, ancestral character estimations are made and presented. All this is accessible through a new re-designed web interface that can be found at http://www.funtree.info.
Assuntos
Bases de Dados de Proteínas , Evolução Molecular , Proteínas/química , Proteínas/fisiologia , Enzimas/química , Enzimas/metabolismo , Estrutura Terciária de Proteína , Proteínas/classificação , Análise de Sequência de ProteínaRESUMO
We present EC-BLAST (http://www.ebi.ac.uk/thornton-srv/software/rbl/), an algorithm and Web tool for quantitative similarity searches between enzyme reactions at three levels: bond change, reaction center and reaction structure similarity. It uses bond changes and reaction patterns for all known biochemical reactions derived from atom-atom mapping across each reaction. EC-BLAST has the potential to improve enzyme classification, identify previously uncharacterized or new biochemical transformations, improve the assignment of enzyme function to sequences, and assist in enzyme engineering.
Assuntos
Algoritmos , Bases de Dados de Proteínas , Enzimas/química , Enzimas/metabolismo , Software , Animais , Fenômenos Bioquímicos , Catálise , Enzimas/classificação , Humanos , InternetRESUMO
The latest version of the CATH-Gene3D protein structure classification database (4.0, http://www.cathdb.info) provides annotations for over 235,000 protein domain structures and includes 25 million domain predictions. This article provides an update on the major developments in the 2 years since the last publication in this journal including: significant improvements to the predictive power of our functional families (FunFams); the release of our 'current' putative domain assignments (CATH-B); a new, strictly non-redundant data set of CATH domains suitable for homology benchmarking experiments (CATH-40) and a number of improvements to the web pages.
Assuntos
Bases de Dados de Proteínas , Anotação de Sequência Molecular , Estrutura Terciária de Proteína , Genômica , Internet , Estrutura Terciária de Proteína/genética , Proteínas/classificaçãoRESUMO
Allergic reactions can be considered as maladaptive IgE immune responses towards environmental antigens. Intriguingly, these mechanisms are observed to be very similar to those implicated in the acquisition of an important degree of immunity against metazoan parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that IgE-mediated immune responses evolved in mammals to provide extra protection against metazoan parasites rather than to cause allergy, we predict that the environmental allergens will share key properties with the metazoan parasite antigens that are specifically targeted by IgE in infected human populations. We seek to test this prediction by examining if significant similarity exists between molecular features of allergens and helminth proteins that induce an IgE response in the human host. By employing various computational approaches, 2712 unique protein molecules that are known IgE antigens were searched against a dataset of proteins from helminths and parasitic arthropods, resulting in a comprehensive list of 2445 parasite proteins that show significant similarity through sequence and structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin, CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prolamin). We identified epitopic-like regions in 206 parasite proteins and present the first example of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and confirming it as the target of IgE in schistosomiasis infected humans. The identification of significant similarity, inclusive of the epitopic regions, between allergens and helminth proteins against which IgE is an observed marker of protective immunity explains the 'off-target' effects of the IgE-mediated immune system in allergy. All these findings can impact the discovery and design of molecules used in immunotherapy of allergic conditions.
Assuntos
Alérgenos/imunologia , Antígenos de Helmintos/química , Antígenos de Helmintos/imunologia , Proteínas de Helminto/imunologia , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Alérgenos/química , Alérgenos/genética , Animais , Antígenos de Helmintos/genética , Evolução Molecular , Proteínas de Helminto/química , Proteínas de Helminto/genética , Helmintos , Humanos , Hipersensibilidade/genética , Hipersensibilidade/parasitologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Imunoglobulina E/química , Imunoglobulina E/genéticaRESUMO
Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure-activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents.
Assuntos
Anti-Helmínticos/química , Anti-Helmínticos/farmacologia , Desenho de Fármacos , Relação Quantitativa Estrutura-Atividade , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Animais , Anti-Helmínticos/metabolismo , Avaliação Pré-Clínica de Medicamentos , Conformação Molecular , Simulação de Acoplamento Molecular , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/química , NADH NADPH Oxirredutases/metabolismoRESUMO
Drugs and certain proteins are transported across the membranes of Gram-negative bacteria by energy-activated pumps. The outer membrane component of these pumps is a channel that opens from a sealed resting state during the transport process. We describe two crystal structures of the Escherichia coli outer membrane protein TolC in its partially open state. Opening is accompanied by the exposure of three shallow intraprotomer grooves in the TolC trimer, where our mutagenesis data identify a contact point with the periplasmic component of a drug efflux pump, AcrA. We suggest that the assembly of multidrug efflux pumps is accompanied by induced fit of TolC driven mainly by accommodation of the periplasmic component.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Resistência Microbiana a Medicamentos/fisiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/química , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Conformação Proteica , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Lipoproteínas , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação PuntualRESUMO
Understanding which are the catalytic residues in an enzyme and what function they perform is crucial to many biology studies, particularly those leading to new therapeutics and enzyme design. The original version of the Catalytic Site Atlas (CSA) (http://www.ebi.ac.uk/thornton-srv/databases/CSA) published in 2004, which catalogs the residues involved in enzyme catalysis in experimentally determined protein structures, had only 177 curated entries and employed a simplistic approach to expanding these annotations to homologous enzyme structures. Here we present a new version of the CSA (CSA 2.0), which greatly expands the number of both curated (968) and automatically annotated catalytic sites in enzyme structures, utilizing a new method for annotation transfer. The curated entries are used, along with the variation in residue type from the sequence comparison, to generate 3D templates of the catalytic sites, which in turn can be used to find catalytic sites in new structures. To ease the transfer of CSA annotations to other resources a new ontology has been developed: the Enzyme Mechanism Ontology, which has permitted the transfer of annotations to Mechanism, Annotation and Classification in Enzymes (MACiE) and UniProt Knowledge Base (UniProtKB) resources. The CSA database schema has been re-designed and both the CSA data and search capabilities are presented in a new modern web interface.
Assuntos
Domínio Catalítico , Bases de Dados de Proteínas , Enzimas/química , Ontologias Biológicas , Internet , Análise de Sequência de ProteínaRESUMO
Enzymes are the proteins responsible for the catalysis of life. Enzymes sharing a common ancestor as defined by sequence and structure similarity are grouped into families and superfamilies. The molecular function of enzymes is defined as their ability to catalyze biochemical reactions; it is manually classified by the Enzyme Commission and robust approaches to quantitatively compare catalytic reactions are just beginning to appear. Here, we present an overview of studies at the interface of the evolution and function of enzymes.
Assuntos
Enzimas/classificação , Enzimas/genética , Evolução Molecular , Enzimas/metabolismoRESUMO
CATH version 3.5 (Class, Architecture, Topology, Homology, available at http://www.cathdb.info/) contains 173 536 domains, 2626 homologous superfamilies and 1313 fold groups. When focusing on structural genomics (SG) structures, we observe that the number of new folds for CATH v3.5 is slightly less than for previous releases, and this observation suggests that we may now know the majority of folds that are easily accessible to structure determination. We have improved the accuracy of our functional family (FunFams) sub-classification method and the CATH sequence domain search facility has been extended to provide FunFam annotations for each domain. The CATH website has been redesigned. We have improved the display of functional data and of conserved sequence features associated with FunFams within each CATH superfamily.
Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Genômica , Internet , Anotação de Sequência Molecular , Dobramento de Proteína , Proteínas/química , Proteínas/classificação , Proteínas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia Estrutural de ProteínaRESUMO
FunTree is a new resource that brings together sequence, structure, phylogenetic, chemical and mechanistic information for structurally defined enzyme superfamilies. Gathering together this range of data into a single resource allows the investigation of how novel enzyme functions have evolved within a structurally defined superfamily as well as providing a means to analyse trends across many superfamilies. This is done not only within the context of an enzyme's sequence and structure but also the relationships of their reactions. Developed in tandem with the CATH database, it currently comprises 276 superfamilies covering ~1800 (70%) of sequence assigned enzyme reactions. Central to the resource are phylogenetic trees generated from structurally informed multiple sequence alignments using both domain structural alignments supplemented with domain sequences and whole sequence alignments based on commonality of multi-domain architectures. These trees are decorated with functional annotations such as metabolite similarity as well as annotations from manually curated resources such the catalytic site atlas and MACiE for enzyme mechanisms. The resource is freely available through a web interface: www.ebi.ac.uk/thorton-srv/databases/FunTree.
Assuntos
Bases de Dados de Proteínas , Enzimas/química , Enzimas/classificação , Evolução Biológica , Enzimas/metabolismo , Filogenia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de ProteínaRESUMO
BACKGROUND: The search for new antimalarial treatments is urgent due to growing resistance to existing therapies. The Open Source Malaria (OSM) project offers a promising starting point, having extensively screened various compounds for their effectiveness. Further analysis of the chemical space surrounding these compounds could provide the means for innovative drugs. METHODS: We report an optimisation-based method for quantitative structure-activity relationship (QSAR) modelling that provides explainable modelling of ligand activity through a mathematical programming formulation. The methodology is based on piecewise regression principles and offers optimal detection of breakpoint features, efficient allocation of samples into distinct sub-groups based on breakpoint feature values, and insightful regression coefficients. Analysis of OSM antimalarial compounds yields interpretable results through rules generated by the model that reflect the contribution of individual fingerprint fragments in ligand activity prediction. Using knowledge of fragment prioritisation and screening of commercially available compound libraries, potential lead compounds for antimalarials are identified and evaluated experimentally via a Plasmodium falciparum asexual growth inhibition assay (PfGIA) and a human cell cytotoxicity assay. CONCLUSIONS: Three compounds are identified as potential leads for antimalarials using the methodology described above. This work illustrates how explainable predictive models based on mathematical optimisation can pave the way towards more efficient fragment-based lead discovery as applied in malaria.
Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Ligantes , Malária/tratamento farmacológicoRESUMO
Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.
Assuntos
Complexos Multienzimáticos , NADH NADPH Oxirredutases , Esquistossomose mansoni , Esquistossomose , Animais , Criança , Humanos , Schistosoma mansoni , Cristalografia por Raios X , NADP/metabolismo , Esquistossomose/tratamento farmacológico , Sítios de Ligação , Esquistossomose mansoni/parasitologiaRESUMO
In the 40 years since its inception, the Protein Data Bank (PDB) has amassed over 80,000 experimentally determined structural models of proteins, plus many models of DNA and RNA fragments. The majority of the protein models have contributed, in some way, to an understanding of their particular protein's function, be it through the conformation of its catalytic residues, the details of its interactions with other proteins, substrate molecules, DNA, and so on. However, the totality of the data in the PDB provides a rich source of more generalized knowledge about proteins, their molecular biology, and evolution. Here, we describe how the focus of protein structural analysis has developed over the past 40 years. © 2012 Wiley Periodicals, Inc. Biopolymers 99: 183-188, 2013.
Assuntos
Bases de Dados de Proteínas/história , Armazenamento e Recuperação da Informação , Proteínas/química , História do Século XX , História do Século XXI , Modelos Moleculares , Proteínas Tirosina Fosfatases/químicaRESUMO
In order to understand the evolution of enzyme reactions and to gain an overview of biological catalysis we have combined sequence and structural data to generate phylogenetic trees in an analysis of 276 structurally defined enzyme superfamilies, and used these to study how enzyme functions have evolved. We describe in detail the analysis of two superfamilies to illustrate different paradigms of enzyme evolution. Gathering together data from all the superfamilies supports and develops the observation that they have all evolved to act on a diverse set of substrates, whilst the evolution of new chemistry is much less common. Despite that, by bringing together so much data, we can provide a comprehensive overview of the most common and rare types of changes in function. Our analysis demonstrates on a larger scale than previously studied, that modifications in overall chemistry still occur, with all possible changes at the primary level of the Enzyme Commission (E.C.) classification observed to a greater or lesser extent. The phylogenetic trees map out the evolutionary route taken within a superfamily, as well as all the possible changes within a superfamily. This has been used to generate a matrix of observed exchanges from one enzyme function to another, revealing the scale and nature of enzyme evolution and that some types of exchanges between and within E.C. classes are more prevalent than others. Surprisingly a large proportion (71%) of all known enzyme functions are performed by this relatively small set of 276 superfamilies. This reinforces the hypothesis that relatively few ancient enzymatic domain superfamilies were progenitors for most of the chemistry required for life.
Assuntos
Enzimas/química , Enzimas/fisiologia , Evolução Molecular , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Dados de Sequência Molecular , Relação Estrutura-AtividadeRESUMO
CATH version 3.3 (class, architecture, topology, homology) contains 128,688 domains, 2386 homologous superfamilies and 1233 fold groups, and reflects a major focus on classifying structural genomics (SG) structures and transmembrane proteins, both of which are likely to add structural novelty to the database and therefore increase the coverage of protein fold space within CATH. For CATH version 3.4 we have significantly improved the presentation of sequence information and associated functional information for CATH superfamilies. The CATH superfamily pages now reflect both the functional and structural diversity within the superfamily and include structural alignments of close and distant relatives within the superfamily, annotated with functional information and details of conserved residues. A significantly more efficient search function for CATH has been established by implementing the search server Solr (http://lucene.apache.org/solr/). The CATH v3.4 webpages have been built using the Catalyst web framework.
Assuntos
Bases de Dados de Proteínas , Estrutura Terciária de Proteína , Filogenia , Dobramento de Proteína , Proteínas/química , Proteínas/classificaçãoRESUMO
Pathogen evolution of drug resistance often occurs in a stepwise manner via the accumulation of multiple mutations that in combination have a non-additive impact on fitness, a phenomenon known as epistasis. The evolution of resistance via the accumulation of point mutations in the DHFR genes of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv) has been studied extensively and multiple studies have shown epistatic interactions between these mutations determine the accessible evolutionary trajectories to highly resistant multiple mutations. Here, we simulated these evolutionary trajectories using a model of molecular evolution, parameterised using Rosetta Flex ddG predictions, where selection acts to reduce the target-drug binding affinity. We observe strong agreement with pathways determined using experimentally measured IC50 values of pyrimethamine binding, which suggests binding affinity is strongly predictive of resistance and epistasis in binding affinity strongly influences the order of fixation of resistance mutations. We also infer pathways directly from the frequency of mutations found in isolate data, and observe remarkable agreement with the most likely pathways predicted by our mechanistic model, as well as those determined experimentally. This suggests mutation frequency data can be used to intuitively infer evolutionary pathways, provided sufficient sampling of the population.
Assuntos
Antimaláricos , Antimaláricos/farmacologia , Pirimetamina , Mutação , Mutação Puntual , Evolução Molecular , Plasmodium falciparum/genética , Resistência a Medicamentos/genética , Tetra-Hidrofolato Desidrogenase/genéticaRESUMO
The RecA/RAD51 nucleoprotein filament is central to the reaction of homologous recombination (HR). Filament activity must be tightly regulated in vivo as unrestrained HR can cause genomic instability. Our mechanistic understanding of HR is restricted by lack of structural information about the regulatory proteins that control filament activity. Here, we describe a structural and functional analysis of the HR inhibitor protein RecX and its mode of interaction with the RecA filament. RecX is a modular protein assembled of repeated three-helix motifs. The relative arrangement of the repeats generates an elongated and curved shape that is well suited for binding within the helical groove of the RecA filament. Structure-based mutagenesis confirms that conserved basic residues on the concave side of RecX are important for repression of RecA activity. Analysis of RecA filament dynamics in the presence of RecX shows that RecX actively promotes filament disassembly. Collectively, our data support a model in which RecX binding to the helical groove of the filament causes local dissociation of RecA protomers, leading to filament destabilisation and HR inhibition.
Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Recombinação Genética , Sequência de Aminoácidos , Análise Mutacional de DNA , Modelos Moleculares , Dados de Sequência Molecular , Nucleoproteínas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Recombinases Rec A/metabolismo , Propriedades de SuperfícieRESUMO
Resistance to drugs used to treat tuberculosis disease (TB) continues to remain a public health burden, with missense point mutations in the underlying Mycobacterium tuberculosis bacteria described for nearly all anti-TB drugs. The post-genomics era along with advances in computational and structural biology provide opportunities to understand the interrelationships between the genetic basis and the structural consequences of M. tuberculosis mutations linked to drug resistance. Pyrazinamide (PZA) is a crucial first line antibiotic currently used in TB treatment regimens. The mutational promiscuity exhibited by the pncA gene (target for PZA) necessitates computational approaches to investigate the genetic and structural basis for PZA resistance development. We analysed 424 missense point mutations linked to PZA resistance derived from â¼35K M. tuberculosis clinical isolates sourced globally, which comprised the four main M. tuberculosis lineages (Lineage 1-4). Mutations were annotated to reflect their association with PZA resistance. Genomic measures (minor allele frequency and odds ratio), structural features (surface area, residue depth and hydrophobicity) and biophysical effects (change in stability and ligand affinity) of point mutations on pncA protein stability and ligand affinity were assessed. Missense point mutations within pncA were distributed throughout the gene, with the majority (>80%) of mutations with a destabilising effect on protomer stability and on ligand affinity. Active site residues involved in PZA binding were associated with multiple point mutations highlighting mutational diversity due to selection pressures at these functionally important sites. There were weak associations between genomic measures and biophysical effect of mutations. However, mutations associated with PZA resistance showed statistically significant differences between structural features (surface area and residue depth), but not hydrophobicity score for mutational sites. Most interestingly M. tuberculosis lineage 1 (ancient lineage) exhibited a distinct protein stability profile for mutations associated with PZA resistance, compared to modern lineages.