Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Entropy (Basel) ; 24(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35327891

RESUMO

Systems are naturally or purposely formed with functional components and connection structures [...].

2.
Entropy (Basel) ; 24(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626614

RESUMO

In order to extract efficient power generation, a wind turbine (WT) system requires an accurate maximum power point tracking (MPPT) technique. Therefore, a novel robust variable-step perturb-and-observe (RVS-P&O) algorithm was developed for the machine-side converter (MSC). The control strategy was applied on a WT based permanent-magnet synchronous generator (PMSG) to overcome the downsides of the currently published P&O MPPT methods. Particularly, two main points were involved. Firstly, a systematic step-size selection on the basis of power and speed measurement normalization was proposed; secondly, to obtain acceptable robustness for high and long wind-speed variations, a new correction to calculate the power variation was carried out. The grid-side converter (GSC) was controlled using a second-order sliding mode controller (SOSMC) with an adaptive-gain super-twisting algorithm (STA) to realize the high-quality seamless setting of power injected into the grid, a satisfactory power factor correction, a high harmonic performance of the AC source, and removal of the chatter effect compared to the traditional first-order sliding mode controller (FOSMC). Simulation results showed the superiority of the suggested RVS-P&O over the competing based P&O techniques. The RVS-P&O offered the WT an efficiency of 99.35%, which was an increase of 3.82% over the variable-step P&O algorithm. Indeed, the settling time was remarkably enhanced; it was 0.00794 s, which was better than for LS-P&O (0.0841 s), SS-P&O (0.1617 s), and VS-P&O (0.2224 s). Therefore, in terms of energy efficiency, as well as transient and steady-state response performances under various operating conditions, the RVS-P&O algorithm could be an accurate candidate for MPP online operation tracking.

3.
Evol Dev ; 23(1): 46-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33300666

RESUMO

By adopting a longitudinal study design and through geometric morphometrics methods, we investigated size and shape regulation in the head capsule during the larval development of the cabbage butterfly Pieris brassicae under laboratory conditions. We found evidence of size regulation by compensatory growth, although not equally effective in all larval stages. Size compensation is not attained through the regulation of developmental timing, but rather through the modulation of per-time growth rate. As for the shape, neither the variance of the symmetric component of shape, nor the level of fluctuating asymmetry show any evidence of increase across stages, either at the population or individual level, which is interpreted as a mark of ontogenetic shape regulation. In addition, also the geometry of individual asymmetry is basically conserved across stages. While providing specific documentation on the ontogeny of size and shape variation in this insect, this study may contribute to a more general understanding of developmental regulation and its influence on phenotypic evolution.


Assuntos
Borboletas , Animais , Larva , Estudos Longitudinais
4.
Entropy (Basel) ; 23(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34573735

RESUMO

In this paper, the robust stabilization and synchronization of a novel chaotic system are presented. First, a novel chaotic system is presented in which this system is realized by implementing a sigmoidal function to generate the chaotic behavior of this analyzed system. A bifurcation analysis is provided in which by varying three parameters of this chaotic system, the respective bifurcations plots are generated and evinced to analyze and verify when this system is in the stability region or in a chaotic regimen. Then, a robust controller is designed to drive the system variables from the chaotic regimen to stability so that these variables reach the equilibrium point in finite time. The robust controller is obtained by selecting an appropriate robust control Lyapunov function to obtain the resulting control law. For synchronization purposes, the novel chaotic system designed in this study is used as a drive and response system, considering that the error variable is implemented in a robust control Lyapunov function to drive this error variable to zero in finite time. In the control law design for stabilization and synchronization purposes, an extra state is provided to ensure that the saturated input sector condition must be mathematically tractable. A numerical experiment and simulation results are evinced, along with the respective discussion and conclusion.

5.
Theor Popul Biol ; 136: 22-30, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33221334

RESUMO

A recent theoretical, deterministic model of the effects of phenotypic robustness on adaptive evolutionary dynamics showed that a certain level of phenotypic robustness (critical robustness) is a required condition for adaptation to occur and to be maintained during evolution in most real organismal systems. We built an individual-based heuristic model to verify the soundness of these theoretical results through computer simulation, testing expectations under a range of scenarios for the relevant parameters of the evolutionary dynamics. These include the mutation probability, the presence of stochastic effects, the introduction of environmental influences and the possibility for some features of the population (like selection coefficients and phenotypic robustness) to change themselves during adaptation. Overall, we found a good match between observed and expected results, even for evolutionary parameter values that violate some of the assumptions of the deterministic model, and that robustness can itself evolve. However, from more than one simulation it appears that very high robustness values, higher than the critical value, can limit or slow-down adaptation. This possible trade-off was not predicted by the deterministic model.


Assuntos
Evolução Biológica , Modelos Genéticos , Seleção Genética , Simulação por Computador , Heurística , Mutação , Fenótipo
6.
J Therm Biol ; 75: 62-68, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30017053

RESUMO

Drosophila suzukii (Matsumura, 1931) is a highly successful invasive dipteran which represents a serious threat for global fruit industry. Among other adaptive traits, D. suzukii owes its success to the derived morphological features of its ovipositor, which allows the insect to exploit the exclusive ecological niche of fresh fruit, thus avoiding competition with other closely related species. With the aim of investigating temperature-induced phenotypic plasticity of D. suzukii ovipositor, we reared this insect in four different laboratory conditions, represented by the combination of two developmental temperatures and two diet regimes for the larvae. We recorded the effects of these two factors on ovipositor size and shape and overall body size through a combination of distance-based and geometric morphometric analyses. Results showed that insects attain the largest body sizes at lower temperature, whereas the diet does not determine significant difference in size. However, the effect on size of the two factors is less pronounced in the ovipositor, which shows a negative allometry with respect to body size in all treatments. At higher temperature, ovipositor shape tends also to co-vary with its own size. Neither temperature nor diet have significant effect on ovipositor bilateral fluctuating asymmetry. These results confirm the hypothesis that in D. suzukii the toughened valve of the ovipositor are subjected to effective morpho-functional constraints, while probably being under strong selection by reason of their mechanical role.


Assuntos
Drosophila/anatomia & histologia , Oviposição , Temperatura , Animais , Tamanho Corporal , Feminino , Espécies Introduzidas , Larva , Fenótipo
7.
Dev Genes Evol ; 226(3): 187-96, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27038021

RESUMO

Does a modular body organization present a challenge for developmental control? We investigate the idea of a possible developmental cost of modularity by examining the relationship between modularity and developmental stability in a multi-segmented arthropod taxon: the geophilomorph centipedes. In a sample of eight species, we tested the correlation between developmental stability, estimated from measures of translational fluctuating asymmetry, and the number of trunk segments and some other morphological traits, both at the species and individual levels. We found sizeable differences in size and shape patterns of variation at the level of species. However, we did not find any clear evidence of correlation between fluctuating asymmetry and the number of trunk segments or the other morphological traits considered. Thus, our results provide no support to the idea of a possible trade-off between the cardinality of a modular system and the level of developmental precision in the phenotypic expression of its modules. The results of this exploratory study invite further investigations of patterns of translational fluctuating asymmetry in segmented animals and other modular organisms, as these have the potential to reveal features of developmental stability that cannot be captured by the study of bilateral asymmetry alone.


Assuntos
Artrópodes/classificação , Artrópodes/genética , Animais , Artrópodes/anatomia & histologia , Artrópodes/crescimento & desenvolvimento , Evolução Biológica , Padronização Corporal , Filogenia
8.
J Exp Zool B Mol Dev Evol ; 326(1): 31-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26612084

RESUMO

Theoretical and computational studies predict a positive role for widespread phenotype resistance to genetic mutation, or "phenotype mutational robustness," in enhancing adaptation to novel environments through the accumulation of cryptic genetic variation. However, this has not been verified through experimental evolution in biological systems at the level of whole organisms. In a short-term evolution experiment of about 250 generations, we studied the adaptive performances of independently evolving populations of the bacterium Escherichia coli in two new nutritional environments, represented by minimal media with either lactate or glycerol as the sole carbon source. At the start of the experiments, all populations expressed identical phenotype, while differing for the amount of cryptic genetic variation, artificially produced by mutagenesis. We found that cryptic genetic variation can promote significantly faster adaptation to a new nutritional environment in E. coli. The scale of this effect varies between the two environments, and correlates with an estimation of the phenotype robustness of the ability to grow in a given medium, based on survival rate after mutagenesis in the same medium.


Assuntos
Escherichia coli/fisiologia , Adaptação Fisiológica , Meios de Cultura , Evolução Molecular Direcionada , Meio Ambiente , Escherichia coli/genética , Variação Genética , Genótipo , Glicerol/metabolismo , Ácido Láctico/metabolismo , Mutação , Fenótipo
9.
Naturwissenschaften ; 102(3-4): 16, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25809818

RESUMO

Variation in animal body size is the result of a complex interplay between variation in cell number and cell size, but the latter has seldom been considered in wide-ranging comparative studies, although distinct patterns of variation have been described in the evolution of different lineages. We investigated the correlation between epidermal cell size and body size in a sample of 29 geophilomorph centipede species, representative of a wide range of body sizes, from 6 mm dwarf species to gigantic species more than 200 mm long, exploiting the marks of epidermal cells on the overlying cuticle in the form of micro-sculptures called scutes. We found conspicuous and significant variation in average scute area, both between suprageneric taxa and between genera, while the within-species range of variation is comparatively small. This supports the view that the average epidermal cell size is to some extent taxon specific. However, regression analyses show that neither body size nor the number of leg-bearing segments explain this variation, which suggests that cell size is not an usual target of change for body size evolution in this group of arthropods, although there is evidence of its correlation with other morphological variables, like cuticle thickness. Scute sizes of miniaturized geophilomorph species are well within the range of the lineage to which the species belong, suggesting recent evolutionary transitions to smaller body size.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/citologia , Tamanho Corporal , Animais , Tamanho Celular , Células Epidérmicas , Filogenia , Análise de Regressão
10.
Proc Biol Sci ; 281(1781): 20133037, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24573851

RESUMO

In many arthropods, there is a change in relative segment size during post-embryonic development, but how segment differential growth is produced is little known. A new dataset of the highest quality specimens of the 429 Myr old trilobite Aulacopleura koninckii provides an unparalleled opportunity to investigate segment growth dynamics and its control in an early arthropod. Morphometric analysis across nine post-embryonic stages revealed a growth gradient in the trunk of A. koninckii. We contrastively tested different growth models referable to two distinct hypotheses of growth control for the developing trunk: (i) a segment-specific control, with individual segments having differential autonomous growth progression, and (ii) a regional control, with segment growth depending on their relative position along the main axis. We show that the trunk growth pattern of A. koninckii was consistent with a regional growth control producing a continuous growth gradient that was stable across all developmental stages investigated. The specific posterior-to-anterior decaying shape of the growth gradient suggests it deriving from the linear transduction of a graded signal, similar to those commonly provided by morphogens. A growth control depending on a form of positional specification, possibly realized through the linear interpretation of a graded signal, may represent the primitive condition for arthropod differential growth along the main body axis, from which the diverse and generally more complex forms of growth control in subsequent arthropods have evolved.


Assuntos
Artrópodes/crescimento & desenvolvimento , Padronização Corporal/fisiologia , Fósseis , Modelos Biológicos , Animais , Artrópodes/anatomia & histologia , Pesos e Medidas Corporais , República Tcheca , Análise de Regressão
11.
Theory Biosci ; 142(1): 1-11, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633802

RESUMO

In animal species with separate sexes, abnormal individuals with a mix of phenotypically male and phenotypically female body parts are generally indicated as gynandromorphs, whereas individuals with intermediate sexual phenotypic traits are generally indicated as intersexes. However, this distinction, clear as it may seem, is neither universally agreed upon, nor free of critical issues. In consideration of the role of sex anomalies in understanding normal development, we reassess these phenomena of abnormal sexual development, taking into consideration the more recent advances in the study of sex determination and sexual differentiation. We argue that a distinction between gynandromorphism and intersexuality, although useful for descriptive purposes, is not always possible or sensible. We discuss the conceptual and terminological intricacies of the literature on this subject and provide reasons for largely, although not strictly, preferring a terminology based on descriptive rather than causal morphology, that is, on the observed phenotypic patterns rather on the causal process behind them.


Assuntos
Transtornos do Desenvolvimento Sexual , Animais , Masculino , Feminino , Fenótipo
12.
Insects ; 14(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36835736

RESUMO

Size and shape are important determinants of fitness in most living beings. Accordingly, the capacity of the organism to regulate size and shape during growth, containing the effects of developmental disturbances of different origin, is considered a key feature of the developmental system. In a recent study, through a geometric morphometric analysis on a laboratory-reared sample of the lepidopteran Pieris brassicae, we found evidence of regulatory mechanisms able to restrain size and shape variation, including bilateral fluctuating asymmetry, during larval development. However, the efficacy of the regulatory mechanism under greater environmental variation remains to be explored. Here, based on a field-reared sample of the same species, by adopting identical measurements of size and shape variation, we found that the regulatory mechanisms for containing the effects of developmental disturbances during larval growth in P. brassicae are also effective under more natural environmental conditions. This study may contribute to better characterization of the mechanisms of developmental stability and canalization and their combined effects in the developmental interactions between the organism and its environment.

13.
Genes (Basel) ; 14(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37107690

RESUMO

Despite a natural rewilding process that caused wolf populations in Europe to increase and expand in the last years, human-wolf conflicts still persist, threatening the long-term wolf presence in both anthropic and natural areas. Conservation management strategies should be carefully designed on updated population data and planned on a wide scale. Unfortunately, reliable ecological data are difficult and expensive to obtain and often hardly comparable through time or among different areas, especially because of different sampling designs. In order to assess the performance of different methods to estimate wolf (Canis lupus L.) abundance and distribution in southern Europe, we simultaneously applied three techniques: wolf howling, camera trapping and non-invasive genetic sampling in a protected area of the northern Apennines. We aimed at counting the minimum number of packs during a single wolf biological year and evaluating the pros and cons for each technique, comparing results obtained from different combinations of these three methods and testing how sampling effort may affect results. We found that packs' identifications could be hardly comparable if methods were separately used with a low sampling effort: wolf howling identified nine, camera trapping 12 and non-invasive genetic sampling eight packs. However, increased sampling efforts produced more consistent and comparable results across all used methods, although results from different sampling designs should be carefully compared. The integration of the three techniques yielded the highest number of detected packs, 13, although with the highest effort and cost. A common standardised sampling strategy should be a priority approach to studying elusive large carnivores, such as the wolf, allowing for the comparison of key population parameters and developing shared and effective conservation management plans.


Assuntos
Lobos , Animais , Humanos , Lobos/genética , Conservação dos Recursos Naturais , Europa (Continente)
14.
Insects ; 14(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132578

RESUMO

Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.

15.
Dev Genes Evol ; 221(2): 105-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21479655

RESUMO

Postembryonic segmentation (anamorphosis) is widespread among arthropods, but only partially known as for its developmental mechanics and control. Studies on developmental genetics of segmentation in anamorphic arthropods are mostly limited to the germ band stage, during early phases of embryonic development. This work presents the first data on the postembryonic expression of a segmentation gene in a myriapod. Using real-time PCR, we analyzed engrailed expression patterns during the anamorphic stages of the centipede Lithobius peregrinus. A variation pattern in en RNA level during anamorphosis suggests that gene expression is precisely modulated during this period of development and that engrailed is mainly expressed in the posterior part of the body, in the newly differentiating segments of each stage. As anamorphosis is possibly the primitive segmentation mode in arthropods, the postembryonic en expression pattern documented here provides evidence for a conservation of en role in ontogeny, across the embryonic/postembryonic boundary, as well as in phylogeny, across the same boundary, but in the opposite direction, from primitive postembryonic expression to the more derived expression in clades with exclusively embryonic segmentation.


Assuntos
Artrópodes/crescimento & desenvolvimento , Artrópodes/genética , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Modelos Genéticos , Dados de Sequência Molecular , Filogenia
16.
Front Zool ; 8(1): 19, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21859471

RESUMO

BACKGROUND: In the adult males of helminthomorph millipedes, one or two pairs of legs in the anterior part of the trunk are strongly modified into sexual appendages (gonopods) used for sperm transfer during the copula. Gonopods differentiate in an advanced phase of post-embryonic development, in most cases as replacement for the walking legs of the seventh trunk ring, as these first regress to tiny primordia, to eventually develop into gonopods at a subsequent stadium. These extremely localized but dramatic changes have been described as a non-systemic metamorphosis. In the present study we describe morphological and anatomical changes of trunk ring VII associated with non-systemic metamorphosis in four helminthomorph species. RESULTS: As documented here for the first time by means of traditional histology methods and new techniques based on confocal laser scanning microscopy, the external modifications caused by non-systemic metamorphosis are associated to a huge rearrangement of internal anatomy, mostly due to the development of gonopod apodemes and extrinsic muscles. CONCLUSIONS: Internal changes in the seventh trunk ring, locally leading to the dorsal displacement of the ventral nerve cord and the digestive tract, are modulated in a taxon-specific manner, and are very conspicuous in the blaniulids Nopoiulus kochii and Blaniulus guttulatus, with likely major functional consequences.

17.
Gen Comp Endocrinol ; 174(1): 60-9, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21871895

RESUMO

In arthropods, molting events are mediated by the binding of the ecdysone hormone to a heterodimer of two nuclear receptors: the ecdysone receptor (EcR) and the retinoid X receptor (RXR), a homolog of ultraspiracle (USP). We have cloned partial sequences of several isoforms for EcR and RXR genes from the centipede Lithobius peregrinus, and studied their expression profile during the second post-embryonic stage. LpEcR and LpRXR inferred amino acid sequences are very similar to other arthropod orthologs, especially to those of chelicerates and hemimetabolous insects, and their expression levels are significantly higher during the 48 h that precede the molt. Results obtained in this study represent the first data on the genetic basis of the ecdysone signal pathway for a myriapod, and in particular for an animal that, through a stereotyped developmental schedule paced by the molt cycle, completes trunk segmentation during post-embryonic life.


Assuntos
Artrópodes/metabolismo , Receptores de Esteroides/metabolismo , Receptores X de Retinoides/metabolismo , Animais , Artrópodes/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Muda/fisiologia , Reação em Cadeia da Polimerase , Receptores de Esteroides/genética , Receptores X de Retinoides/genética
18.
Insects ; 12(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066094

RESUMO

Gynandromorphs, i.e., individuals with a mix of male and female traits, are common in the wild bees of the genus Megachile (Hymenoptera, Apoidea). We described new transverse gynandromorphs in Megachile pilidens Alfkeen, 1924 and analyze the spatial distribution of body parts with male vs. female phenotype hitherto recorded in the transverse gynandromorphs of the genus Megachile. We identified 10 different arrangements, nine of which are minor variants of a very general pattern, with a combination of male and female traits largely shared by the gynandromorphs recorded in 20 out of 21 Megachile species in our dataset. Based on the recurrence of the same gynandromorph pattern, the current knowledge on sex determination and sex differentiation in the honey bee, and the results of recent gene-knockdown experiments in these insects, we suggest that these composite phenotypes are possibly epigenetic, rather than genetic, mosaics, with individual body parts of either male or female phenotype according to the locally expressed product of the alternative splicing of sex-determining gene transcripts.

19.
PeerJ Comput Sci ; 6: e254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33816906

RESUMO

Integrating data from multiple heterogeneous data sources entails dealing with data distributed among heterogeneous information sources, which can be structured, semi-structured or unstructured, and providing the user with a unified view of these data. Thus, in general, gathering information is challenging, and one of the main reasons is that data sources are designed to support specific applications. Very often their structure is unknown to the large part of users. Moreover, the stored data is often redundant, mixed with information only needed to support enterprise processes, and incomplete with respect to the business domain. Collecting, integrating, reconciling and efficiently extracting information from heterogeneous and autonomous data sources is regarded as a major challenge. In this paper, we present an approach for the semantic integration of heterogeneous data sources, DIF (Data Integration Framework), and a software prototype to support all aspects of a complex data integration process. The proposed approach is an ontology-based generalization of both Global-as-View and Local-as-View approaches. In particular, to overcome problems due to semantic heterogeneity and to support interoperability with external systems, ontologies are used as a conceptual schema to represent both data sources to be integrated and the global view.

20.
Arthropod Struct Dev ; 48: 4-11, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30496889

RESUMO

Small arthropods are not simply scaled-down versions of their larger closest relatives, as changes in morphology and functional characters are largely governed by scaling laws. These same scaling laws set strict limits to size change toward smaller sizes. The evolution of extreme miniaturized forms involves the breaking of these constraints, by means of design innovations that allow evolutionary change to evade the limits posed by scaling laws. Here we review several cases studies in insects and other arthropods that illustrate this evolutionary path. We examine morphologies commonly recurring in miniaturized forms but not exclusive to them, morphologies exclusive to miniaturized forms and novel functional solutions supported by unconventional morphologies. We also discuss miniaturization and its evolvability taking into consideration arthropod postembryonic development and modular body organization. The modification of features commonly supposed not to change appears as a recurring pattern in arthropod miniaturization.


Assuntos
Insetos/anatomia & histologia , Animais , Evolução Biológica , Tamanho Corporal , Insetos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa