Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(5): e63525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158382

RESUMO

Achondroplasia (ACH) is the most common form of skeletal dysplasia characterized by a rhizomelic short stature. Radiological skeletal findings in pediatric and adult patients with ACH include short long bones, a relatively longer fibula compared to the tibia, a narrow lumbar interpedicular distance, and a hypoplastic iliac wing. Nonetheless, the characteristics of skeletal growth during the neonatal and infantile periods have scarcely been explored. Therefore, this retrospective study aimed to analyze the radiological skeletal growth during the neonatal and infantile periods in 41 Japanese patients with genetically confirmed ACH. The length of long bones in the upper and lower limbs and the lumbar interpedicular distances at L1 and L4 were measured. These parameters showed significant positive correlations with age. The upper segment-to-lower segment ratio in the lower limbs resembled the data of healthy controls from previous reports. The L1/L4 and fibula/tibia ratios increased with age, suggesting that some representative skeletal phenotypes of ACH were less distinct during the neonatal and infantile periods. In conclusion, for the first time, this study radiologically characterized skeletal growth during the neonatal and infantile periods of patients with genetically confirmed ACH.


Assuntos
Acondroplasia , Lactente , Recém-Nascido , Adulto , Humanos , Criança , Estudos Retrospectivos , Acondroplasia/diagnóstico por imagem , Acondroplasia/genética , Radiografia , Tíbia , Osso e Ossos
2.
Am J Med Genet A ; 188(1): 249-252, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453469

RESUMO

Pathogenic-activating variants of interferon induced with Helicase C domain 1 (IFIH1) cause Singleton-Merten (S-M) syndrome, which accompanies acro-osteolysis, loss of permanent teeth, and aortic calcification, as well as causing Aicardi-Goutières (A-G) syndrome, which shows progressive encephalopathy, spastic paraplegia, and calcification of basal ganglia. Recently, patients with overlapping syndromes presenting with features of S-M syndrome and A-G syndrome were reported. However, progression of clinical features of this condition has not been fully understood. We report a Japanese boy with a novel pathogenic IFIH1 variant who presented with clinical features of S-M syndrome and A-G syndrome.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Interferons , Doenças da Aorta , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Hipoplasia do Esmalte Dentário , Humanos , Helicase IFIH1 Induzida por Interferon/genética , Japão , Masculino , Metacarpo/anormalidades , Doenças Musculares , Malformações do Sistema Nervoso , Odontodisplasia , Osteoporose , Calcificação Vascular
3.
Clin Pediatr Endocrinol ; 32(4): 221-227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842142

RESUMO

Pseudoachondroplasia (PSACH) is an autosomal dominant skeletal dysplasia caused by pathogenic variants of cartilage oligomeric matrix protein (COMP). Clinical symptoms of PSACH are characterized by growth disturbances after the first year of life. These disturbances lead to severe short stature with short limbs, brachydactyly, scoliosis, joint laxity, joint pain since childhood, and a normal face. Epimetaphyseal dysplasia, shortened long bones, and short metacarpals and phalanges are common findings on radiological examination. Additionally, anterior tonguing of the vertebral bodies in the lateral view is an important finding in childhood because it is specific to PSACH and normalizes with age. Here, we report five Japanese patients with PSACH, with one recurrent (p.Cys351Tyr) and four novel heterozygous pathogenic COMP variants (p.Asp437Tyr, p.Asp446Gly, p.Asp507Tyr, and p.Asp518Val). These five pathogenic variants were located in the calcium-binding type 3 (T3) repeats. In four of the novel variants, the affected amino acid was aspartic acid, which is abundant in each of the eight T3 repeats. We describe the radiological findings of these five patients. We also retrospectively analyzed the sequential changes in the vertebral body and epimetaphysis of the long bones from the neonatal to infantile periods in a patient with PSACH and congenital heart disease.

4.
Case Rep Genet ; 2022: 5021758, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060212

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare skeletal disorder characterized by congenital malformation of the great toes and progressive heterotopic ossification. Malformation of the great toes appears at birth, while heterotopic ossification generally occurs during childhood and rarely occurs during infancy. Classical FOP results from the heterozygous p.Arg206His variant of the ACVR1 gene, which encodes Activin A receptor type 1. Recently, some atypical FOP patients with other ACVR1 gene variants and clinical features that are not observed in classical FOP patients have been reported. Herein, we describe a girl with severe FOP and multiple anomalies, including syndactyly of the hands and feet, nail agenesis, mandibular hypoplasia, heterotopic ossification occurring from infancy, and congenital cardiac malformation. In our patient, we identified de novo occurrence of the heterozygous p.Arg258Gly variant of ACVR1, which has previously been reported in only two severe FOP patients. Heterotopic ossification occurred earlier and more frequently compared with classical FOP patients. We present the time-series changes in heterotopic ossification in our patient and compare her clinical features with those of the previously reported patients with p.Arg258Gly. Our report deepens understanding of the clinical features in severe FOP with p.Arg258Gly and of FOP as a systemic disorder.

5.
Mol Genet Genomic Med ; 9(6): e1675, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939306

RESUMO

BACKGROUND: Osteogenesis imperfecta (OI) is a rare connective-tissue disorder characterized by bone fragility. Approximately 90% of all OI cases are caused by variants in COL1A1 or COL1A2. Additionally, IFITM5 variants are responsible for the unique OI type 5. We previously analyzed COL1A1/2 variants in 22 Japanese families with OI through denaturing high-performance liquid chromatography screening, but our detection rate was low (41%). METHODS: To expand the genotype-phenotype correlations, we performed a genetic analysis of COL1A1/2 and IFITM5 in 96 non-consanguineous Japanese OI probands by Sanger sequencing. RESULTS: Of these individuals, 54, 41, and 1 had type 1 (mild), type 2-4 (moderate-to-severe), and type 5 phenotypes, respectively. In the mild group, COL1A1 nonsense and splice-site variants were prevalent (n = 30 and 20, respectively), but there were also COL1A1 and COL1A2 triple-helical glycine substitutions (n = 2 and 1, respectively). In the moderate-to-severe group, although COL1A1 and COL1A2 glycine substitutions were common (n = 14 and 18, respectively), other variants were also detected. The single case of type 5 had the characteristic c.-14C>T variant in IFITM5. CONCLUSION: These results increase our previous detection rate for COL1A1/2 variants to 99% and provide insight into the genotype-phenotype correlations in OI.


Assuntos
Genótipo , Osteogênese Imperfeita/genética , Fenótipo , Adolescente , Adulto , Criança , Pré-Escolar , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/genética , Feminino , Humanos , Lactente , Japão , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Mutação , Osteogênese Imperfeita/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa