Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 208(5): 1248-1258, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35173033

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.


Assuntos
Antígeno B7-H1/metabolismo , Ativação do Complemento/imunologia , Complemento C3/antagonistas & inibidores , Complemento C5/antagonistas & inibidores , Hemoglobinúria Paroxística/patologia , Antígeno B7-H1/sangue , Antígenos CD55/genética , Antígenos CD59/genética , Complemento C3/imunologia , Complemento C5/imunologia , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Hemoglobinúria Paroxística/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Proteínas de Membrana/genética , Monócitos/metabolismo
2.
J Infect Dis ; 228(2): 160-168, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36869832

RESUMO

BACKGROUND: The emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variants BA.1, BA.2, and BA.4/5 demonstrate higher transmission and infection rates than previous variants of concern. To evaluate effectiveness of heterologous and homologous booster vaccination, we directly compared cellular and humoral immune responses as well as neutralizing capacity against replication-competent SARS-CoV-2 wild type, Delta, and Omicron variants BA.1, BA.2, and BA.4/5. METHODS: Peripheral blood mononuclear cells and serum samples from 137 participants were investigated, in 3 major groups. Individuals in the first group were vaccinated twice with ChAdOx1 and boosted with a messenger RNA (mRNA) vaccine (BNT162b2 or mRNA-1273); the second group included triple mRNA--vaccinated participants, and the third group, twice-vaccinated and convalescent individuals. RESULTS: Vaccination and convalescence resulted in the highest SARS-CoV-2-specific antibody levels, stronger T-cell responses, and best neutralization against wild type, Delta Omicron BA.2, and BA.4/5, while a combination of ChAdOx1 and BNT162b2 vaccination elevated neutralizing capacity against Omicron BA.1. In addition, heterologous booster regimens, compared with homologous regimens, showed higher efficacy against Omicron BA.2 as well as BA.4/5. CONCLUSIONS: We showed that twice-vaccinated and convalescent individuals demonstrated the strongest immunity against Omicron BA.2 and BA.4/5 variant, followed by those receiving heterologous and homologous booster vaccine regimens.


Assuntos
Vacina BNT162 , COVID-19 , Humanos , Leucócitos Mononucleares , SARS-CoV-2/genética , Anticorpos Antivirais , RNA Mensageiro , Anticorpos Neutralizantes
3.
Clin Chem Lab Med ; 61(12): 2248-2255, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-37401452

RESUMO

OBJECTIVES: Immune checkpoints play an important role in maintaining the balance of the immune system and in the development of autoimmune diseases. A central checkpoint molecule is the programmed cell death protein 1 (PD-1, CD279) which is typically located on the surface of T cells. Its primary ligand PD-L1 is expressed on antigen presenting cells and on cancer cells. Several variants of PD-L1 exist, among these soluble molecules (sPD-L1) present in serum at low concentrations. sPD-L1 was found elevated in cancer and several other diseases. sPD-L1 in infectious diseases has received relatively little attention so far and is therefore subject of this study. METHODS: sPD-L1 serum levels were determined in 170 patients with viral infections (influenza, varicella, measles, Dengue fever, SARS-CoV2) or bacterial sepsis by ELISA and compared to the levels obtained in 11 healthy controls. RESULTS: Patients with viral infections and bacterial sepsis generally show significantly higher sPD-L1 serum levels compared to healthy donors, except for varicella samples where results do not reach significance. sPD-L1 is increased in patients with impaired renal function compared to those with normal renal function, and sPD-L1 correlates significantly with serum creatinine. Among sepsis patients with normal renal function, sPD-L1 serum levels are significantly higher in Gram-negative sepsis compared to Gram-positive sepsis. In addition, in sepsis patients with impaired renal function, sPD-L1 correlates positively with ferritin and negatively with transferrin. CONCLUSIONS: sPD-L1 serum levels are significantly elevated in patients with sepsis, influenza, mesasles, Dengue fever or SARS-CoV2. Highest levels are detectable in patients with measles and Dengue fever. Also impaired renal function causes an increase in levels of sPD-L1. As a consequence, renal function has to be taken into account in the interpretation of sPD-L1 levels in patients.


Assuntos
Varicela , Dengue , Influenza Humana , Sarampo , Sepse , Humanos , Antígeno B7-H1/metabolismo , Doadores de Sangue , RNA Viral , Rim/fisiologia , Prognóstico
4.
Front Immunol ; 12: 684014, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194438

RESUMO

T cells play a fundamental role in the early control and clearance of many viral infections of the respiratory system. In SARS-CoV-2-infected individuals, lymphopenia with drastically reduced CD4+ and CD8+ T cells correlates with Coronavirus disease 2019 (COVID-19)-associated disease severity and mortality. In this study, we characterized cellular and humoral immune responses induced in patients with mild, severe and critical COVID-19. Peripheral blood mononuclear cells of 37 patients with mild, severe and critical COVID-19 and 10 healthy individuals were analyzed by IFNγ ELISpot and multi-color flow cytometry upon stimulation with peptide pools covering complete immunodominant SARS-CoV-2 matrix, nucleocapsid and spike proteins. In addition SARS-CoV-2 antibody levels, neutralization abilities and anaphylatoxin levels were evaluated by various commercially available ELISA platforms. Our data clearly demonstrates a significantly stronger induction of SARS-CoV-2 specific CD8+ T lymphocytes and higher IFNγ production in patients with mild compared to patients with severe or critical COVID-19. In all patients SARS-CoV-2-specific antibodies with similar neutralizing activity were detected, but highest titers of total IgGs were observed in critical patients. Finally, elevated anaphylatoxin C3a and C5a levels were identified in severe and critical COVID-19 patients probably caused by aberrant immune complex formation due to elevated antibody titers in these patients. Crucially, we provide a full picture of cellular and humoral immune responses of COVID-19 patients and prove that robust polyfunctional CD8+ T cell responses concomitant with low anaphylatoxin levels correlate with mild infections. In addition, our data indicates that high SARS-CoV-2 antibody titers are associated with severe disease progression.


Assuntos
Anafilatoxinas/metabolismo , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/fisiopatologia , Progressão da Doença , ELISPOT , Feminino , Citometria de Fluxo , Humanos , Imunidade Humoral , Interferon gama/sangue , Masculino , Pessoa de Meia-Idade , Gravidade do Paciente
5.
Antibiotics (Basel) ; 9(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074981

RESUMO

Tigecycline offers broad anti-bacterial coverage for critically ill patients with complicated infections. A described but less researched side effect is coagulopathy. The aim of this study was to test whether tigecycline interferes with fibrinogen polymerization by peripheral interactions. To study the effect of unmetabolized tigecycline, plasma of healthy volunteers were spiked with increasing concentrations of tigecycline. In a second experimental leg, immortalized human liver cells (HepG2) were treated with the same concentrations to test an inhibitory effect of hepatic tigecycline metabolites. Using standard coagulation tests, only the activated thromboplastin time in humane plasma was prolonged with increasing concentrations of tigecycline. Visualization of the fibrin network using confocal live microscopy demonstrated a qualitative difference in tigecycline treated experiments. Thrombelastometry and standard coagulation tests did not indicate an impairment of coagulation. Although the discrepancy between functional and immunologic fibrinogen levels increased in cell culture assays with tigecycline concentration, fibrinogen levels in spiked plasma samples did not show significant differences determined by functional versus immunologic methods. In our in vitro study, we excluded a direct effect of tigecycline in increasing concentrations on blood coagulation in healthy adults. Furthermore, we demonstrated a rapid loss of mitochondrial activity in hepatic cells with supra-therapeutic tigecycline dosages.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa