Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biologicals ; 84: 101713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37793309

RESUMO

In the current transition to intensified upstream processing, the risks of adopting traditional single-use systems for high-titer, long-duration perfusion cultures, have thus far not been considered. This case study uses the Failure Modes and Effects Analysis (FMEA) method to evaluate the risks associated with implementing upstream single-use technology. The simulated model process was used to compare the risk level of single-use technology for a traditional fed-batch cell culture with that for perfusion culture, under the same annual protein production conditions. To provide a reasonable source of potential risk for FMEA, all single-use upstream operations for both fed-batch and perfusion processes were investigated using an analytical method developed to quantify the impact of process parameters and operating conditions on single-use system specifications and to ensure objectivity. Many of the risks and their levels, were similar in long-duration perfusion cultures and fed-batch cultures. However, differences were observed for high-risk components such as daily sampling and installation. The result of this analysis indicates that the reasons for risk are different for fed-batch cultures and perfusion cultures such as larger bioreactors in fed-batch and longer runs in perfusion, respectively. This risk assessment method could identify additional control measures and be part of a holistic contamination control strategy and help visualize their effectiveness.


Assuntos
Produtos Biológicos , Animais , Cricetinae , Reatores Biológicos , Técnicas de Cultura Celular por Lotes/métodos , Anticorpos Monoclonais , Perfusão , Cricetulus
2.
Rice (N Y) ; 10(1): 48, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29164348

RESUMO

BACKGROUND: Rice aleurone layer develops different colours with various chemical tests that may help to develop some rapid tests for identification/grouping of rice varieties. Understanding the colour inheritance pattern could enable to develop chemical clues that may help for genetic purity analysis along with grow-out-test. RESULTS: In this study, inheritance pattern of aleurone layer colour was studied in parents, F1 and F2 progenies derived from the crosses IR 36 × Acc. No. 2693 and IR 64 × Acc. No. 2693. The parent IR 36 showed light yellow (NaOH/KOH) and brown (phenol/modified phenol test) colour; whereas, Acc. No. 2693 revealed wine red/dark wine red (NaOH/KOH) and light brown colour/no reaction (phenol/modified phenol test). In contrary, another parent IR 64 exhibited light yellow (KOH/NaOH) and dark brown (phenol, modified phenol) colour. Both the F1 showed an intermediate light wine red colour (NaOH/KOH) and dark brown (phenol and modified phenol) colour, which is dominant over their one of the parents. The colour pattern with standard phenol/modified phenol, NaOH and KOH tests in F2 progenies of both the crosses showed 9:7 (complementary gene interaction) and 11:5 ratios (reciprocal dominance modification of recessive alleles), respectively. CONCLUSIONS: Our findings clearly elucidate the colour inheritance pattern in rice that may facilitate to develop rapid chemical tests to identify/ group the varieties for genetic purity analysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa