Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 133(11): 927-943, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37846569

RESUMO

BACKGROUND: Cardiac ventricles provide the contractile force of the beating heart throughout life. How the primitive endocardium-layered myocardial projections called trabeculae form and mature into the adult ventricles is of great interest for biology and regenerative medicine. Trabeculation is dependent on the signaling protein Nrg1 (neuregulin-1). However, the mechanism of action of Nrg1 and its role in ventricular wall maturation are poorly understood. METHODS: We investigated the functions and downstream mechanisms of Nrg1 signaling during ventricular chamber development using confocal imaging, transcriptomics, and biochemical approaches in mice with cardiac-specific inactivation or overexpression of Nrg1. RESULTS: Analysis of cardiac-specific Nrg1 mutant mice showed that the transcriptional program underlying cardiomyocyte-oriented cell division and trabeculae formation depends on endocardial Nrg1 to myocardial ErbB2 (erb-b2 receptor tyrosine kinase 2) signaling and phospho-Erk (phosphorylated extracellular signal-regulated kinase; pErk) activation. Early endothelial loss of Nrg1 and reduced pErk activation diminished cardiomyocyte Pard3 and Crumbs2 (Crumbs Cell Polarity Complex Component 2) protein and altered cytoskeletal gene expression and organization. These alterations are associated with abnormal gene expression related to mitotic spindle organization and a shift in cardiomyocyte division orientation. Nrg1 is crucial for trabecular growth and ventricular wall thickening by regulating an epithelial-to-mesenchymal transition-like process in cardiomyocytes involving migration, adhesion, cytoskeletal actin turnover, and timely progression through the cell cycle G2/M phase. Ectopic cardiac Nrg1 overexpression and high pErk signaling caused S-phase arrest, sustained high epithelial-to-mesenchymal transition-like gene expression, and prolonged trabeculation, blocking compact myocardium maturation. Myocardial trabecular patterning alterations resulting from above- or below-normal Nrg1-dependent pErk activation were concomitant with sarcomere actin cytoskeleton disorganization. The Nrg1 loss- and gain-of-function transcriptomes were enriched for Yap1 (yes-associated protein-1) gene signatures, identifying Yap1 as a potential downstream effector. Furthermore, biochemical and imaging data reveal that Nrg1 influences pErk activation and Yap1 nuclear-cytoplasmic distribution during trabeculation. CONCLUSIONS: These data establish the Nrg1-ErbB2/ErbB4-Erk axis as a crucial regulator of cardiomyocyte cell cycle progression and migration during ventricular development.


Assuntos
Miócitos Cardíacos , Neuregulina-1 , Animais , Camundongos , Miócitos Cardíacos/metabolismo , Neuregulina-1/genética , Miocárdio/metabolismo , Ventrículos do Coração/metabolismo , Divisão Celular
2.
Cell Death Dis ; 12(8): 729, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294700

RESUMO

Bone morphogenetic protein (Bmp) signaling is critical for organismal development and homeostasis. To elucidate Bmp2 function in the vascular/hematopoietic lineages we generated a new transgenic mouse line in which ectopic Bmp2 expression is controlled by the Tie2 promoter. Tie2CRE/+;Bmp2tg/tg mice develop aortic valve dysfunction postnatally, accompanied by pre-calcific lesion formation in valve leaflets. Remarkably, Tie2CRE/+;Bmp2tg/tg mice develop extensive soft tissue bone formation typical of acquired forms of heterotopic ossification (HO) and genetic bone disorders, such as Fibrodysplasia Ossificans Progressiva (FOP). Ectopic ossification in Tie2CRE/+;Bmp2tg/tg transgenic animals is accompanied by increased bone marrow hematopoietic, fibroblast and osteoblast precursors and circulating pro-inflammatory cells. Transplanting wild-type bone marrow hematopoietic stem cells into lethally irradiated Tie2CRE/+;Bmp2tg/tg mice significantly delays HO onset but does not prevent it. Moreover, transplanting Bmp2-transgenic bone marrow into wild-type recipients does not result in HO, but hematopoietic progenitors contribute to inflammation and ectopic bone marrow colonization rather than to endochondral ossification. Conversely, aberrant Bmp2 signaling activity is associated with fibroblast accumulation, skeletal muscle fiber damage, and expansion of a Tie2+ fibro-adipogenic precursor cell population, suggesting that ectopic bone derives from a skeletal muscle resident osteoprogenitor cell origin. Thus, Tie2CRE/+;Bmp2tg/tg mice recapitulate HO pathophysiology, and might represent a useful model to investigate therapies seeking to mitigate disorders associated with aberrant extra-skeletal bone formation.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Linhagem da Célula , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Receptor TIE-2/metabolismo , Animais , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/patologia , Valva Aórtica/fisiopatologia , Transplante de Medula Óssea , Proteína Morfogenética Óssea 2/sangue , Calcinose/diagnóstico por imagem , Calcinose/patologia , Calcinose/fisiopatologia , Condrogênese , Células Endoteliais/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Estimativa de Kaplan-Meier , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Musculares/patologia , Ossificação Heterotópica/sangue , Ossificação Heterotópica/diagnóstico por imagem , Osteogênese , Tomografia Computadorizada por Raios X
3.
Cell Death Dis ; 9(3): 399, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540665

RESUMO

During mammalian heart development, restricted myocardial Bmp2 expression is a key patterning signal for atrioventricular canal specification and the epithelial-mesenchyme transition that gives rise to the valves. Using a mouse transgenic line conditionally expressing Bmp2, we show that widespread Bmp2 expression in the myocardium leads to valve and chamber dysmorphogenesis and embryonic death by E15.5. Transgenic embryos show thickened valves, ventricular septal defect, enlarged trabeculae and dilated ventricles, with an endocardium able to undergo EMT both in vivo and in vitro. Gene profiling and marker analysis indicate that cellular proliferation is increased in transgenic embryos, whereas chamber maturation and patterning are impaired. Similarly, forced Bmp2 expression stimulates proliferation and blocks cardiomyocyte differentiation of embryoid bodies. These data show that widespread myocardial Bmp2 expression directs ectopic valve primordium formation and maintains ventricular myocardium and cardiac progenitors in a primitive, proliferative state, identifying the potential of Bmp2 in the expansion of immature cardiomyocytes.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Proliferação de Células , Transição Epitelial-Mesenquimal , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Animais , Proteína Morfogenética Óssea 2/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa