Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 293(39): 15233-15242, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30126840

RESUMO

Chlorobaculum tepidum, a green sulfur bacterium, utilizes chlorobactene as its major carotenoid, and this organism also accumulates a reduced form of this monocyclic pigment, 1',2'-dihydrochlorobactene. The protein catalyzing this reduction is the last unidentified enzyme in the biosynthetic pathways for all of the green sulfur bacterial pigments used for photosynthesis. The genome of C. tepidum contains two paralogous genes encoding members of the FixC family of flavoproteins: bchP, which has been shown to encode an enzyme of bacteriochlorophyll biosynthesis; and bchO, for which a function has not been assigned. Here we demonstrate that a bchO mutant is unable to synthesize 1',2'-dihydrochlorobactene, and when bchO is heterologously expressed in a neurosporene-producing mutant of the purple bacterium, Rhodobacter sphaeroides, the encoded protein is able to catalyze the formation of 1,2-dihydroneurosporene, the major carotenoid of the only other organism reported to synthesize 1,2-dihydrocarotenoids, Blastochloris viridis Identification of this enzyme completes the pathways for the synthesis of photosynthetic pigments in Chlorobiaceae, and accordingly and consistent with its role in carotenoid biosynthesis, we propose to rename the gene cruI Notably, the absence of cruI in B. viridis indicates that a second 1,2-carotenoid reductase, which is structurally unrelated to CruI (BchO), must exist in nature. The evolution of this carotenoid reductase in green sulfur bacteria is discussed herein.


Assuntos
Bacterioclorofilas/biossíntese , Carotenoides/biossíntese , Chlorobi/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bacterioclorofilas/química , Bacterioclorofilas/genética , Vias Biossintéticas/genética , Carotenoides/química , Carotenoides/genética , Carotenoides/metabolismo , Chlorobi/química , Chlorobium/enzimologia , Chlorobium/genética , Genoma Bacteriano/genética , Oxirredutases/química , Oxirredutases/genética , Fotossíntese/genética
2.
Environ Res ; 158: 324-332, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28672130

RESUMO

BACKGROUND: Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM2.5) and ozone (O3) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. METHODOLOGY: Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. RESULTS: MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. CONCLUSIONS: MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease.


Assuntos
Poluentes Atmosféricos/toxicidade , Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Ozônio/toxicidade , Material Particulado/toxicidade , Animais , Tronco Encefálico/anatomia & histologia , Cidades , Cães , Feminino , Masculino , México , Tamanho da Partícula
3.
Environ Res ; 146: 404-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26829765

RESUMO

Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aß42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection.


Assuntos
Poluição do Ar/efeitos adversos , Córtex Pré-Frontal/patologia , Substância Branca/patologia , Adolescente , Doença de Alzheimer/induzido quimicamente , Animais , Criança , Pré-Escolar , Cães , Feminino , Humanos , Lactente , Masculino , México , Microscopia Eletrônica de Transmissão , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/ultraestrutura , População Urbana , Substância Branca/efeitos dos fármacos , Substância Branca/ultraestrutura
4.
Biochemistry ; 51(22): 4488-98, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22577986

RESUMO

The self-aggregated state of bacteriochlorophyll (BChl) c molecules in chlorosomes belonging to a bchQ bchR mutant of the green sulfur bacteria Chlorobaculum tepidum, which mostly produces a single 17(2)-farnesyl-(R)-[8-ethyl,12-methyl]BChl c homologue, was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy and high-resolution electron microscopy. A nearly complete (1)H and (13)C chemical shift assignment was obtained from well-resolved homonuclear (13)C-(13)C and heteronuclear (1)H-(13)C NMR data sets collected from (13)C-enriched chlorosome preparations. Pronounced doubling (1:1) of specific (13)C and (1)H resonances revealed the presence of two distinct and nonequivalent BChl c components, attributed to all syn- and all anti-coordinated parallel stacks, depending on the rotation of the macrocycle with respect to the 3(1)-methyl group. Steric hindrance from the 20-methyl functionality induces structural differences between the syn and anti forms. A weak but significant and reproducible reflection at 1/0.69 nm(-1) in the direction perpendicular to the curvature of cylindrical segments observed with electron microscopy also suggests parallel stacking of BChl c molecules, though the observed lamellar spacing of 2.4 nm suggests weaker packing than for wild-type chlorosomes. We propose that relaxation of the pseudosymmetry observed for the wild type and a related BChl d mutant leads to extended domains of alternating syn and anti stacks in the bchQ bchR chlorosomes. Domains can be joined to form cylinders by helical syn-anti transition trajectories. The phase separation in domains on the cylindrical surface represents a basic mechanism for establishing suprastructural heterogeneity in an otherwise uniform supramolecular scaffolding framework that is well-ordered at the molecular level.


Assuntos
Proteínas de Bactérias/química , Bacterioclorofilas/química , Chlorobi/química , Chlorobi/genética , Proteínas de Bactérias/genética , Bacterioclorofilas/genética , Chlorobi/ultraestrutura , Mutação , Ressonância Magnética Nuclear Biomolecular
5.
Proc Natl Acad Sci U S A ; 106(21): 8525-30, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19435848

RESUMO

Chlorosomes are the largest and most efficient light-harvesting antennae found in nature, and they are constructed from hundreds of thousands of self-assembled bacteriochlorophyll (BChl) c, d, or e pigments. Because they form very large and compositionally heterogeneous organelles, they had been the only photosynthetic antenna system for which no detailed structural information was available. In our approach, the structure of a member of the chlorosome class was determined and compared with the wild type (WT) to resolve how the biological light-harvesting function of the chlorosome is established. By constructing a triple mutant, the heterogeneous BChl c pigment composition of chlorosomes of the green sulfur bacteria Chlorobaculum tepidum was simplified to nearly homogeneous BChl d. Computational integration of two different bioimaging techniques, solid-state NMR and cryoEM, revealed an undescribed syn-anti stacking mode and showed how ligated BChl c and d self-assemble into coaxial cylinders to form tubular-shaped elements. A close packing of BChls via pi-pi stacking and helical H-bonding networks present in both the mutant and in the WT forms the basis for ultrafast, long-distance transmission of excitation energy. The structural framework is robust and can accommodate extensive chemical heterogeneity in the BChl side chains for adaptive optimization of the light-harvesting functionality in low-light environments. In addition, syn-anti BChl stacks form sheets that allow for strong exciton overlap in two dimensions enabling triplet exciton formation for efficient photoprotection.


Assuntos
Bacterioclorofilas/antagonistas & inibidores , Membranas Intracelulares/química , Nanotubos/química , Bacterioclorofilas/química , Chlorobi/química , Microscopia Crioeletrônica , Membranas Intracelulares/ultraestrutura , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Mutação/genética , Nanotubos/ultraestrutura
6.
Photosynth Res ; 101(1): 21-34, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19568953

RESUMO

The first committed step in the biosynthesis of (bacterio-)chlorophyll is the insertion of Mg2+ into protoporphyrin IX by Mg-chelatase. In all known (B)Chl-synthesizing organisms, Mg-chelatase is encoded by three genes that are homologous to bchH, bchD, and bchI of Rhodobacter spp. The genomes of all sequenced strains of green sulfur bacteria (Chlorobi) encode multiple bchH paralogs, and in the genome of Chlorobaculum tepidum, there are three bchH paralogs, denoted CT1295 (bchT), CT1955 (bchS), and CT1957 (bchH). Cba. tepidum mutants lacking one or two of these paralogs were constructed and characterized. All of the mutants lacking only one of these BchH homologs, as well as bchS bchT and bchH bchT double mutants, which can only produce BchH or BchS, respectively, were viable. However, attempts to construct a bchH bchS double mutant, in which only BchT was functional, were consistently unsuccessful. This result suggested that BchT alone is unable to support the minimal (B)Chl synthesis requirements of cells required for viability. The pigment compositions of the various mutant strains varied significantly. The BChl c content of the bchS mutant was only approximately 10% of that of the wild type, and this mutant excreted large amounts of protoporphyrin IX into the growth medium. The observed differences in BChl c production of the mutant strains were consistent with the hypothesis that the three BchH homologs function in end product regulation and/or substrate channeling of intermediates in the BChl c biosynthetic pathway.


Assuntos
Proteínas de Bactérias/genética , Chlorobium/genética , Chlorobium/metabolismo , Clorofila/biossíntese , Proteínas de Bactérias/metabolismo , Chlorobium/classificação , Clorofila/química , Cromatografia Líquida de Alta Pressão , Análise Mutacional de DNA , Liases/genética , Liases/metabolismo , Modelos Genéticos , Estrutura Molecular , Mutação , Filogenia , Protoporfirinas/química , Protoporfirinas/metabolismo
7.
J Bacteriol ; 190(2): 747-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17993528

RESUMO

The Chlorobaculum tepidum genome contains two paralogous genes, CT2256 and CT1232, whose products are members of the FixC dehydrogenase superfamily and have sequence similarity to geranylgeranyl reductases. Each gene was insertionally inactivated, and the resulting mutants were characterized. CT2256 encodes geranylgeranyl reductase (BchP); CT1232 is not involved in bacteriochlorophyll or chlorophyll biosynthesis.


Assuntos
Chlorobi/enzimologia , Oxirredutases/genética , Chlorobi/genética , Deleção de Genes , Mutagênese Insercional , Oxirredutases/fisiologia
8.
FEBS Lett ; 581(28): 5435-9, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17981156

RESUMO

Intact chlorosomes of Chlorobium tepidum were embedded in amorphous ice layers and examined by cryo-electron microscopy to study the long-range organization of bacteriochlorophyll (BChl) layers. End-on views reveal that chlorosomes are composed of several multi-layer tubules of variable diameter (20-30 nm) with some locally undulating non-tubular lamellae in between. The multi-layered tubular structures are more regular and larger in a C. tepidum mutant that only synthesizes [8-ethyl, 12-methyl]-BChl d. Our data show that wild-type C. tepidum chlorosomes do not have a highly regular, long-range BChl c layer organization and that they contain several multi-layered tubules rather than single-layer tubules or exclusively undulating lamellae as previously proposed.


Assuntos
Bacterioclorofilas/análise , Chlorobium/citologia , Chlorobium/ultraestrutura , Microscopia Crioeletrônica , Membranas Intracelulares/ultraestrutura
9.
J Bacteriol ; 189(17): 6176-84, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17586634

RESUMO

Bacteriochlorophyll (BChl) c is the major photosynthetic pigment in the green sulfur bacterium Chlorobaculum tepidum, in which it forms protein-independent aggregates that function in light harvesting. BChls c, d, and e are found only in chlorosome-producing bacteria and are unique among chlorophylls because of methylations that occur at the C-8(2) and C-12(1) carbons. Two genes required for these methylation reactions were identified and designated bchQ (CT1777) and bchR (CT1320). BchQ and BchR are members of the radical S-adenosylmethionine (SAM) protein superfamily; each has sequence motifs to ligate a [4Fe-4S] cluster, and we propose that they catalyze the methyl group transfers. bchQ, bchR, and bchQ bchR mutants of C. tepidum were constructed and characterized. The bchQ mutant produced BChl c that was not methylated at C-8(2), the bchR mutant produced BChl c that was not methylated at C-12(1), and the double mutant produced [8-ethyl, 12-methyl]-BChl c that lacked methylation at both the C-8(2) and C-12(1) positions. Compared to the wild type, the Qy absorption bands for BChl c in the mutant cells were narrower and blue shifted to various extents. All three mutants grew slower and had a lower cellular BChl c content than the wild type, an effect that was especially pronounced at low light intensities. These observations show that the C-8(2) and C-12(1) methylations of BChl c play important roles in the adaptation of C. tepidum to low light intensity. The data additionally suggest that these methylations also directly or indirectly affect the regulation of the BChl c biosynthetic pathway.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Chlorobi/enzimologia , Chlorobi/fisiologia , Clorofilídeos/metabolismo , Metiltransferases/metabolismo , Proteínas de Bactérias/química , Bacterioclorofilas/química , Chlorobi/genética , Chlorobi/crescimento & desenvolvimento , Citoplasma/química , Deleção de Genes , Metiltransferases/genética , Microscopia Eletrônica de Transmissão , Mutagênese Insercional , Organelas/ultraestrutura , Análise Espectral
10.
J Bacteriol ; 186(9): 2558-66, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15090495

RESUMO

Bacteriochlorophylls (BChls) c and d, two of the major light-harvesting pigments in photosynthetic green sulfur bacteria, differ only by the presence of a methyl group at the C-20 methine bridge position in BChl c. A gene potentially encoding the C-20 methyltransferase, bchU, was identified by comparative analysis of the Chlorobium tepidum and Chloroflexus aurantiacus genome sequences. Homologs of this gene were amplified and sequenced from Chlorobium phaeobacteroides strain 1549, Chlorobium vibrioforme strain 8327d, and C. vibrioforme strain 8327c, which produce BChls e, d, and c, respectively. A single nucleotide insertion in the bchU gene of C. vibrioforme strain 8327d was found to cause a premature, in-frame stop codon and thus the formation of a truncated, nonfunctional gene product. The spontaneous mutant of this strain that produces BChl c (strain 8327c) has a second frameshift mutation that restores the correct reading frame in bchU. The bchU gene was inactivated in C. tepidum, a BChl c-producing species, and the resulting mutant produced only BChl d. Growth rate measurements showed that BChl c- and d-producing strains of the same organism (C. tepidum or C. vibrioforme) have similar growth rates at high and intermediate light intensities but that strains producing BChl c grow faster than those with BChl d at low light intensities. Thus, the bchU gene encodes the C-20 methyltransferase for BChl c biosynthesis in Chlorobium species, and methylation at the C-20 position to produce BChl c rather than BChl d confers a significant competitive advantage to green sulfur bacteria living at limiting red and near-infrared light intensities.


Assuntos
Proteínas de Bactérias/biossíntese , Bacterioclorofilas/biossíntese , Chlorobium/genética , Genes Bacterianos , Metiltransferases/genética , Sequência de Aminoácidos , Chlorobium/crescimento & desenvolvimento , Dados de Sequência Molecular , Pigmentos Biológicos/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa