Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 59(6): 984-97, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26321255

RESUMO

Transcriptionally active and inactive chromatin domains tend to segregate into separate sub-nuclear compartments to maintain stable expression patterns. However, here we uncovered an inter-chromosomal network connecting active loci enriched in circadian genes to repressed lamina-associated domains (LADs). The interactome is regulated by PARP1 and its co-factor CTCF. They not only mediate chromatin fiber interactions but also promote the recruitment of circadian genes to the lamina. Synchronization of the circadian rhythm by serum shock induces oscillations in PARP1-CTCF interactions, which is accompanied by oscillating recruitment of circadian loci to the lamina, followed by the acquisition of repressive H3K9me2 marks and transcriptional attenuation. Furthermore, depletion of H3K9me2/3, inhibition of PARP activity by olaparib, or downregulation of PARP1 or CTCF expression counteracts both recruitment to the envelope and circadian transcription. PARP1- and CTCF-regulated contacts between circadian loci and the repressive chromatin environment at the lamina therefore mediate circadian transcriptional plasticity.


Assuntos
Cromatina/genética , Células-Tronco Embrionárias Humanas/enzimologia , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Ritmo Circadiano , Corpos Embrioides/enzimologia , Epistasia Genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células HCT116 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lâmina Nuclear/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Ligação Proteica , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Nat Rev Genet ; 17(5): 284-99, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26972587

RESUMO

This year is the tenth anniversary of the publication in this journal of a model suggesting the existence of 'tumour progenitor genes'. These genes are epigenetically disrupted at the earliest stages of malignancies, even before mutations, and thus cause altered differentiation throughout tumour evolution. The past decade of discovery in cancer epigenetics has revealed a number of similarities between cancer genes and stem cell reprogramming genes, widespread mutations in epigenetic regulators, and the part played by chromatin structure in cellular plasticity in both development and cancer. In the light of these discoveries, we suggest here a framework for cancer epigenetics involving three types of genes: 'epigenetic mediators', corresponding to the tumour progenitor genes suggested earlier; 'epigenetic modifiers' of the mediators, which are frequently mutated in cancer; and 'epigenetic modulators' upstream of the modifiers, which are responsive to changes in the cellular environment and often linked to the nuclear architecture. We suggest that this classification is helpful in framing new diagnostic and therapeutic approaches to cancer.


Assuntos
Metilação de DNA , Epigênese Genética , Neoplasias/etiologia , Neoplasias/patologia , Células-Tronco/patologia , Animais , Progressão da Doença , Humanos , Mutação/genética
3.
Nucleic Acids Res ; 48(19): 10867-10876, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33051686

RESUMO

The relationship between stochastic transcriptional bursts and dynamic 3D chromatin states is not well understood. Using an innovated, ultra-sensitive technique, we address here enigmatic features underlying the communications between MYC and its enhancers in relation to the transcriptional process. MYC thus interacts with its flanking enhancers in a mutually exclusive manner documenting that enhancer hubs impinging on MYC detected in large cell populations likely do not exist in single cells. Dynamic encounters with pathologically activated enhancers responsive to a range of environmental cues, involved <10% of active MYC alleles at any given time in colon cancer cells. Being the most central node of the chromatin network, MYC itself likely drives its communications with flanking enhancers, rather than vice versa. We submit that these features underlie an acquired ability of MYC to become dynamically activated in response to a diverse range of environmental cues encountered by the cell during the neoplastic process.


Assuntos
Carcinogênese/genética , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Drosophila , Redes Reguladoras de Genes , Células HCT116 , Humanos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Processos Estocásticos
4.
Genes Dev ; 23(22): 2598-603, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933149

RESUMO

Recent observations highlight that the mammalian genome extensively communicates with itself via long-range chromatin interactions. The causal link between such chromatin cross-talk and epigenetic states is, however, poorly understood. We identify here a network of physically juxtaposed regions from the entire genome with the common denominator of being genomically imprinted. Moreover, CTCF-binding sites within the H19 imprinting control region (ICR) not only determine the physical proximity among imprinted domains, but also transvect allele-specific epigenetic states, identified by replication timing patterns, to interacting, nonallelic imprinted regions during germline development. We conclude that one locus can directly or indirectly pleiotropically influence epigenetic states of multiple regions on other chromosomes with which it interacts.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica/genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Alelos , Animais , Células Cultivadas , Células-Tronco Embrionárias , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante , RNA não Traduzido
5.
Nat Rev Genet ; 10(4): 269-76, 2009 04.
Artigo em Inglês | MEDLINE | ID: mdl-19274048

RESUMO

An overall link between the potential for gene transcription and the timing of replication in S phase is now well established in metazoans. Here we discuss emerging evidence that highlights the possibility that replication timing is causally linked with epigenetic reprogramming. In particular, we bring together conclusions from a range of studies to propose a model in which reprogramming factors determine the timing of replication and the implementation of reprogramming events requires passage through S phase. These considerations have implications for our understanding of development, evolution and diseases such as cancer.


Assuntos
Replicação do DNA/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Cromatina/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/metabolismo , Evolução Molecular , Genoma , Humanos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Fase S
6.
Nature ; 461(7261): 212-7, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19741702

RESUMO

The genome forms extensive and dynamic physical interactions with itself in the form of chromosome loops and bridges, thus exploring the three-dimensional space of the nucleus. It is now possible to examine these interactions at the molecular level, and we have gained glimpses of their functional implications. Chromosomal interactions can contribute to the silencing and activation of genes within the three-dimensional context of the nuclear architecture. Technical advances in detecting these interactions contribute to our understanding of the functional organization of the genome, as well as its adaptive plasticity in response to environmental changes during development and disease.


Assuntos
Posicionamento Cromossômico , Cromossomos/genética , Cromossomos/metabolismo , Regulação da Expressão Gênica , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos/química , Humanos , Conformação de Ácido Nucleico , Transcrição Gênica
7.
Nat Genet ; 38(11): 1341-7, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17033624

RESUMO

Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners. Here we identify 114 unique sequences from all autosomes, several of which interact primarily with the maternally inherited H19 imprinting control region. Imprinted domains were strongly overrepresented in the library of 4C sequences, further highlighting the epigenetic nature of these interactions. Moreover, we found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans. Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells. These observations shed new light on development, cancer epigenetics and the evolution of imprinting.


Assuntos
Cromossomos/química , Clonagem Molecular/métodos , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/genética , Animais , Animais Recém-Nascidos , Sítios de Ligação , Fator de Ligação a CCCTC , Cromatina/química , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias , Impressão Genômica/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Conformação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Longo não Codificante , RNA não Traduzido/genética , Proteínas Repressoras/metabolismo , Transativadores
8.
Semin Cancer Biol ; 23(2): 90-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23376421

RESUMO

The genome is dynamically organized in the nuclear space in a manner that reflects and influences nuclear functions. Developmental processes that govern the formation and maintenance of epigenetic memories are also tightly linked to adaptive changes in the physical and functional landscape of the nuclear architecture. Biological and biophysical principles governing the three-dimensional folding of chromatin are therefore central to our understanding of epigenetic regulation during adaptive responses and in complex diseases, such as cancer. Accumulating evidence points to the direction that global alterations in nuclear architecture and chromatin folding conspire with unstable epigenetic states of the primary chromatin fiber to drive the phenotypic plasticity of cancer cells.


Assuntos
Núcleo Celular/genética , Cromatina/química , Neoplasias/genética , Conformação de Ácido Nucleico , Animais , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Núcleo Celular/fisiologia , Cromatina/metabolismo , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Instabilidade Genômica/genética , Humanos , Modelos Biológicos
9.
Curr Opin Cell Biol ; 19(3): 321-5, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17466501

RESUMO

Despite considerable efforts, the spatial link between the nuclear architecture and the genome remains enigmatic. The 4C method, independently innovated in four different laboratories, might in combination with other methods change that. As this method is based on the unbiased identification of sequences interacting with specific baits, there are unique opportunities for unravelling the secrets of how the genome functions in 3D.


Assuntos
Biologia , Mapeamento Cromossômico , DNA Circular , Genoma , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Animais , Sequência de Bases , Primers do DNA , Previsões , Genoma Humano , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Técnicas de Amplificação de Ácido Nucleico , Conformação de Ácido Nucleico
10.
J Exp Clin Cancer Res ; 43(1): 107, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594748

RESUMO

BACKGROUND: Tumor cells have the ability to invade and form small clusters that protrude into adjacent tissues, a phenomenon that is frequently observed at the periphery of a tumor as it expands into healthy tissues. The presence of these clusters is linked to poor prognosis and has proven challenging to treat using conventional therapies. We previously reported that p60AmotL2 expression is localized to invasive colon and breast cancer cells. In vitro, p60AmotL2 promotes epithelial cell invasion by negatively impacting E-cadherin/AmotL2-related mechanotransduction. METHODS: Using epithelial cells transfected with inducible p60AmotL2, we employed a phenotypic drug screening approach to find compounds that specifically target invasive cells. The phenotypic screen was performed by treating cells for 72 h with a library of compounds with known antitumor activities in a dose-dependent manner. After assessing cell viability using CellTiter-Glo, drug sensitivity scores for each compound were calculated. Candidate hit compounds with a higher drug sensitivity score for p60AmotL2-expressing cells were then validated on lung and colon cell models, both in 2D and in 3D, and on colon cancer patient-derived organoids. Nascent RNA sequencing was performed after BET inhibition to analyse BET-dependent pathways in p60AmotL2-expressing cells. RESULTS: We identified 60 compounds that selectively targeted p60AmotL2-expressing cells. Intriguingly, these compounds were classified into two major categories: Epidermal Growth Factor Receptor (EGFR) inhibitors and Bromodomain and Extra-Terminal motif (BET) inhibitors. The latter consistently demonstrated antitumor activity in human cancer cell models, as well as in organoids derived from colon cancer patients. BET inhibition led to a shift towards the upregulation of pro-apoptotic pathways specifically in p60AmotL2-expressing cells. CONCLUSIONS: BET inhibitors specifically target p60AmotL2-expressing invasive cancer cells, likely by exploiting differences in chromatin accessibility, leading to cell death. Additionally, our findings support the use of this phenotypic strategy to discover novel compounds that can exploit vulnerabilities and specifically target invasive cancer cells.


Assuntos
Neoplasias do Colo , Mecanotransdução Celular , Humanos , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética
11.
Nat Protoc ; 18(3): 755-782, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36434098

RESUMO

The chromosome conformation capture method and its derivatives, such as circularized chromosome conformation capture, carbon copy chromosome conformation capture, high-throughput chromosome conformation capture and capture high-throughput chromosome conformation capture, have pioneered our understanding of the principles of chromosome folding in the nucleus. These technical advances, however, cannot precisely quantitate interaction frequency in very small input samples. Here we describe a protocol for the Nodewalk assay, which is based on converting chromosome conformation capture DNA samples to RNA and subsequently to cDNA using strategically placed primers. This pipeline enables the quantitative analyses of chromatin fiber interactions without compromising its sensitivity down to <300 cells, making it suitable for MiSeq analyses of higher-order chromatin structures in biopsies, circulating tumor cells and transitional cell states, for example. Importantly, the quality of the Nodewalk sample can be assessed before sequencing to avoid unnecessary costs. Moreover, it enables analyses from hundreds of different restriction enzyme fragment viewpoints within the same initial small input sample to uncover complex, genome-wide networks. Following optimization of the different steps, the entire protocol can be completed within 2 weeks.


Assuntos
Cromatina , Cromossomos , Conformação de Ácido Nucleico , Cromatina/genética , Genoma , DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
12.
Nat Commun ; 13(1): 204, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017527

RESUMO

Abnormal WNT signaling increases MYC expression in colon cancer cells in part via oncogenic super-enhancer-(OSE)-mediated gating of the active MYC to the nuclear pore in a poorly understood process. We show here that the principal tenet of the WNT-regulated MYC gating, facilitating nuclear export of the MYC mRNA, is regulated by a CTCF binding site (CTCFBS) within the OSE to confer growth advantage in HCT-116 cells. To achieve this, the CTCFBS directs the WNT-dependent trafficking of the OSE to the nuclear pore from intra-nucleoplasmic positions in a stepwise manner. Once the OSE reaches a peripheral position, which is triggered by a CTCFBS-mediated CCAT1 eRNA activation, its final stretch (≤0.7 µm) to the nuclear pore requires the recruitment of AHCTF1, a key nucleoporin, to the CTCFBS. Thus, a WNT/ß-catenin-AHCTF1-CTCF-eRNA circuit enables the OSE to promote pathological cell growth by coordinating the trafficking of the active MYC gene within the 3D nuclear architecture.


Assuntos
Fator de Ligação a CCCTC/genética , Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , Transporte Ativo do Núcleo Celular , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Núcleo Celular/metabolismo , Colo/metabolismo , Colo/patologia , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Células HCT116 , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Sequenciamento Completo do Genoma
13.
J Biol Chem ; 285(23): 17310-7, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20360005

RESUMO

Uncoupling Proteins (UCPs) are integral ion channels residing in the inner mitochondrial membrane. UCP2 is ubiquitously expressed, while UCP3 is found primarily in muscles and adipose tissue. Although the exact molecular mechanism of action is controversial, it is generally agreed that both homologues function to facilitate mitochondrial fatty acid oxidation. UCP2 and -3 expression is activated by the peroxisome proliferator-activated receptors (PPARs), but so far no PPAR response element has been reported in the vicinity of the Ucp2 and Ucp3 genes. Using genome-wide profiling of PPARgamma occupancy in 3T3-L1 adipocytes we demonstrate that PPARgamma associates with three chromosomal regions in the vicinity of the Ucp3 locus and weakly with a site in intron 1 of the Ucp2 gene. These sites are isolated from the nearest neighboring sites by >900 kb. The most prominent PPARgamma binding site in the Ucp2 and Ucp3 loci is located in intron 1 of the Ucp3 gene and is the only site that facilitates PPARgamma transactivation of a heterologous promoter. This site furthermore transactivates the endogenous Ucp3 promoter, and using chromatin conformation capture we show that it loops out to specifically interact with the Ucp2 promoter and intron 1. Our data indicate that PPARgamma transactivation of both UCP2 and -3 is mediated through this novel enhancer in Ucp3 intron 1.


Assuntos
Adipócitos/metabolismo , Elementos Facilitadores Genéticos , Íntrons , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , PPAR gama/genética , Ativação Transcricional , Células 3T3-L1 , Adipócitos/citologia , Animais , Cromatina/química , Humanos , Camundongos , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Retroviridae/genética , Proteína Desacopladora 2 , Proteína Desacopladora 3
16.
Mol Cell Oncol ; 7(2): 1710992, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158925

RESUMO

WNT signaling enhances MYC expression in cancer cells to increase the rate of cell proliferation. We have recently found that this principle involves the gating of MYC to nuclear pores mediated by an oncogenic super-enhancer in a ß-catenin-dependent manner in colon cancer cells. This phenomenon, which is absent in normal cells, leads to pathological levels of MYC expression.

18.
Nat Genet ; 51(12): 1723-1731, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31784729

RESUMO

WNT signaling activates MYC expression in cancer cells. Here we report that this involves an oncogenic super-enhancer-mediated tethering of active MYC alleles to nuclear pores to increase transcript export rates. As the decay of MYC transcripts is more rapid in the nucleus than in the cytoplasm, the oncogenic super-enhancer-facilitated export of nuclear MYC transcripts expedites their escape from the nuclear degradation system in colon cancer cells. The net sum of this process, as supported by computer modeling, is greater cytoplasmic MYC messenger RNA levels in colon cancer cells than in wild type cells. The cancer-cell-specific gating of MYC is regulated by AHCTF1 (also known as ELYS), which connects nucleoporins to the oncogenic super-enhancer via ß-catenin. We conclude that WNT signaling collaborates with chromatin architecture to post-transcriptionally dysregulate the expression of a canonical cancer driver.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Genes myc , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , Colo/citologia , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/fisiologia , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Processamento Pós-Transcricional do RNA , Fatores de Transcrição/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
19.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-29904581

RESUMO

Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.

20.
Mol Cell Biol ; 24(18): 7855-62, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15340049

RESUMO

The Kcnq1 imprinting control region (ICR) located in intron 10 of the Kcnq1 gene is unmethylated on the paternal chromosome and methylated on the maternal chromosome and has been implicated in the manifestation of parent-of-origin-specific expression of six neighboring genes. The unmethylated Kcnq1 ICR harbors bidirectional silencer activity and drives expression of an antisense RNA, Kcnq1ot1, which overlaps the Kcnq1 coding region. To elucidate whether the Kcnq1ot1 RNA plays a role in the bidirectional silencing activity of the Kcnq1 ICR, we have characterized factor binding sites by genomic footprinting and tested the functional consequence of various deletions of these binding sites in an episome-based system. Deletion of the elements necessary for Kcnq1ot1 promoter function resulted in the loss of silencing activity. Furthermore, interruption of Kcnq1ot1 RNA production by the insertion of a polyadenylation sequence downstream of the promoter also caused a loss of both silencing activity and methylation spreading. Thus, the antisense RNA plays a key role in the silencing function of the ICR. Double-stranded RNA (dsRNA)-mediated RNA interference is unlikely to be involved, as the ICR is active irrespective of the simultaneous production of dsRNA from the genes it silences.


Assuntos
Inativação Gênica , Impressão Genômica , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/genética , RNA Antissenso/genética , Sequência de Bases , Linhagem Celular , DNA/química , DNA/genética , Pegada de DNA , Metilação de DNA , Desoxirribonuclease I , Feminino , Regulação da Expressão Gênica , Genes Reporter , Humanos , Íntrons , Canais de Potássio KCNQ , Canal de Potássio KCNQ1 , Masculino , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa