RESUMO
OBJECTIVES: White spot lesions are one of the most common side effects of orthodontic therapy with a multibracket appliance and may indicate a preliminary stage of caries, also known as initial caries. Several approaches may be utilized to prevent these lesions, such as reducing bacterial adhesion in the area surrounding the bracket. This bacterial colonization can be adversely affected by a number of local characteristics. In this context, the effects of excess dental adhesive in the bracket periphery were investigated by comparing a conventional bracket system with the APC flash-free bracket system. MATERIALS AND METHODS: Both bracket systems were applied to 24 extracted human premolars, and bacterial adhesion with Streptoccocus sobrinus (S. sobrinus) was performed for 24 h, 48 h, 7 d, and 14 d. After incubation, bacterial colonization was examined in specific areas by electron microscopy. RESULTS: Overall, significantly fewer bacterial colonies were found in the adhesive area around the APC flash-free brackets (n = 507 ± 13 bacteria) than the conventionally bonded bracket systems (n = 850 ± 56 bacteria). This is a significant difference (**p = 0.004). However, APC flash-free brackets tend to create marginal gaps with more bacterial adhesion in this area than conventional bracket systems (n = 265 ± 31 bacteria). This bacterial accumulation in the marginal-gap area is also significant (*p = 0.029). CONCLUSION: A smooth adhesive surface with minimal adhesive excess is beneficial for reducing bacterial adhesion but also poses a risk of marginal gap formation with subsequent bacterial colonization, which can potentially trigger carious lesions. CLINICAL RELEVANCE: To reduce bacterial adhesion, the APC flash-free bracket adhesive system with low adhesive excess might be beneficial. APC flash-free brackets reduce the bacterial colonization in the bracket environment. A lower number of bacteria can minimize white spot lesions in the bracket environment. APC flash-free brackets tend to form marginal gaps between the bracket adhesive and the tooth.
Assuntos
Colagem Dentária , Cárie Dentária , Braquetes Ortodônticos , Humanos , Cimentos Dentários , Aderência Bacteriana , Teste de MateriaisRESUMO
Formation and treatment of biofilms present a great challenge for health care and industry. About 80% of human infections are associated with biofilms including biomaterial centered infections, like infections of prosthetic heart valves, central venous catheters, or urinary catheters. Additionally, biofilms can cause food and drinking water contamination. Biofilm research focusses on application of experimental biofilm models to study initial adherence processes, to optimize physico-chemical properties of medical materials for reducing interactions between materials and bacteria, and to investigate biofilm treatment under controlled conditions. Exploring new antimicrobial strategies plays a key role in a variety of scientific disciplines, like medical material research, anti-infectious research, plant engineering, or wastewater treatment. Although a variety of biofilm models exist, there is a lack of standardization for experimental protocols, and designing experimental setups remains a challenge. In this study, a number of experimental parameters critical for material research have been tested that influence formation and stability of an experimental biofilm using the non-pathogenic model strain of Pseudomonas fluorescens. These parameters include experimental time frame, nutrient supply, inoculum concentration, static and dynamic cultivation conditions, material properties, and sample treatment during staining for visualization of the biofilm. It was shown, that all tested parameters critically influence the experimental biofilm formation process. The results obtained in this study shall support material researchers in designing experimental biofilm setups.
Assuntos
Biofilmes , Pseudomonas fluorescens/metabolismo , Antibacterianos , Anti-Infecciosos , Biomassa , Meios de Cultura , Próteses Valvulares Cardíacas , Teste de Materiais , Desenho de Prótese , Resistência ao Cisalhamento , Estresse Mecânico , Fatores de TempoRESUMO
OBJECTIVE: This interlaboratory round robin test investigated the robustness of the Chevron-Notch Beam (CNB) test method and the effect of the processing and testing variations on the fracture toughness of a dental 3Y-TZP ceramic. METHODS: The round robin test was performed precisely following the procedures recommended in ISO 24370:2005 and applied on a commercial 3Y-TZP ceramic (product information). A total of 335 test specimens with dimensions 3×4 x 45 mm³ was equally distributed among 10 participating laboratories of varying experience in fracture toughness testing. A standard operating procedure was defined with either narrow processing tolerances or alternative (wider) processing tolerances (as proposed in ISO 24370). Fracture toughness data (series 2) was analyzed using one way ANOVA followed by post hoc Tukey HSD test and 95% Confidence Intervals (CI) were computed (p < 0.05). A further, preceding round-robin (series 1) test was conducted with - more possible variations of test conditions regarding CNB notch processing and storage conditions. Those results are summarized in the supplement and discussed with the actual ISO 24370 test. RESULTS: Fracture toughness of the 3Y-TZP ceramic material, summarized over all laboratories was measured to KIc = 4.48 ± 0.11 MPam0.5 for the standard processing tolerance and KIc = 4.55 ± 0.31 MPam0.5 for the alternative tolerance. The results revealed a significant influence of cutting offset and notch geometry on KIc when using CNB method. The test medium also has a significant influence on KIc in terms of reduced fracture toughness under the influence of water. With defined testing conditions the number of valid tests and reduced standard deviation increased. In case of strictly following such standard operation procedures, KIc can be determined with high reliability. There is no difference between the involved laboratories, but significant influence of cutting offset on KIC was observed. SIGNIFICANCE: The CNB method is suitable method for determination of KIc on fine-grained ceramics such as 3Y-TZP ceramic. By using tighter tolerances for processing and testing, i.e. closely following the ISO 24370 procedure, a highly-precise evaluation of fracture toughness with low data variation is achievable. The information of the storage medium should always be reported along with the data. CNB fracture toughness testing is an alternative method compared to Single-edge V-notch beam (SEVNB), especially for fine-grained ceramics.
Assuntos
Cerâmica , Zircônio , Materiais Dentários , Teste de Materiais/métodos , Reprodutibilidade dos Testes , Propriedades de SuperfícieRESUMO
The functional architecture of the cerebral cortex is based on intrinsic connections that precisely link neurons from distinct cortical laminae as well as layer-specific afferent and efferent projections. Experimental strategies using in vitro assays originally developed by Friedrich Bonhoeffer have suggested that positional cues confined to individual layers regulate the assembly of local cortical circuits and the formation of thalamocortical projections. One of these wiring molecules is ephrinA5, a ligand for Eph receptor tyrosine kinases. EphrinA5 and Eph receptors exhibit highly dynamic expression patterns in distinct regions of the cortex and thalamus during early and late stages of thalamocortical and cortical circuit formation. In vitro assays suggest that ephrinA5 is a multifunctional wiring molecule for different populations of cortical and thalamic axons. Additionally, the expression patterns of ephrinA5 during cortical development are consistent with this molecule regulating, in alternative ways, specific components of thalamic and cortical connectivity. To test this directly, the organization of thalamocortical projections was examined in mice lacking ephrinA5 gene expression. The anatomical studies in ephrinA5 knockout animals revealed a miswiring of limbic thalamic projections and changes in neocortical circuits that were predicted from the expression pattern and the in vitro analysis of ephrinA5 function.