Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Chemistry ; 28(64): e202201068, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-35789121

RESUMO

Fifteen N-butylpyridinium salts - five monometallic [C4 Py]2 [MBr4 ] and ten bimetallic [C4 Py]2 [M0.5 a M0.5 b Br4 ] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 °C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10-5 and 10-6  S cm-1 . At elevated temperatures, the conductivities reach up to 10-4  S cm-1 at 70 °C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs.

2.
J Ultrasound Med ; 41(3): 565-574, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33955572

RESUMO

PURPOSE: To describe the perfusion patterns of peripheral pulmonary granulomatous lesions (PPGLs) by contrast-enhanced ultrasound (CEUS) and their correlation with vascularization patterns (VPs) represented by immunohistochemical (CD34) endothelial staining. PATIENTS AND METHODS: From January 2007 until September 2020, 10 consecutive patients with histologically confirmed PPGLs were investigated by CEUS. The time to enhancement, classified as early pulmonary-arterial (PA) pattern of enhancement versus delayed bronchial-arterial (BA) pattern of enhancement, the extent of enhancement, classified as marked or reduced, the homogeneity of enhancement, classified as homogeneous or inhomogeneous, and the decrease of enhancement, classified as rapid washout (<120 seconds) or a late washout (≥120 seconds), were analyzed retrospectively. Furthermore, the tissue samples from the study patients and as a control group, 10 samples of normal lung tissue obtained by autopsy, and 10 samples of lung tissue with acute pneumonia obtained by autopsy were immunohistochemically stained with CD34 antibody. The presence of avascular areas (AAs) and the VPs were evaluated in all tissue samples. RESULTS: On CEUS, all PPGLs showed a reduced inhomogeneous BA pattern of enhancement and a rapid washout (<120 seconds). On CD34 staining, all PPGLs showed central AAs in granulomas and a chaotic VP similar to angiogenesis in lung tumors. The lung tissue in control groups revealed on CD34 staining a regular alveolar VP. CONCLUSION: The PPGLs on CEUS show an identical perfusion pattern similar to those of malignant lesions. Furthermore, for the first time, neoangiogenesis was demonstrated as a histopathological correlate to BA pattern of enhancement on CEUS.


Assuntos
Aumento da Imagem , Pneumonia , Meios de Contraste , Granuloma/diagnóstico por imagem , Humanos , Perfusão , Estudos Retrospectivos , Ultrassonografia
3.
Chemistry ; 26(72): 17504-17513, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-32841435

RESUMO

Thirteen N-butylpyridinium salts, including three monometallic [C4 Py]2 [MCl4 ], nine bimetallic [C4 Py]2 [M1-x a Mx b Cl4 ] and one trimetallic compound [C4 Py]2 [M1-y-z a My b Mz c Cl4 ] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 °C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10-4 and 10-8  S cm-1 . Some Cu-based ILs reach conductivities of 10-2  S cm-1 , which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47×10-1  S cm-1 at 70 °C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V.

4.
J Chem Phys ; 148(19): 193818, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-30307196

RESUMO

Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl)sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate(ii). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16% higher than that of a control device fabricated without the nanoplates.

5.
Inorg Chem ; 54(20): 10073-80, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26447991

RESUMO

In this work, we report three isostructural 3D frameworks, named IFP-11 (R = Cl), IFP-12 (R = Br), and IFP-13 (R = Et) (IFP = Imidazolate Framework Potsdam) based on a cobalt(II) center and the chelating linker 2-substituted imidazolate-4-amide-5-imidate. These chelating ligands were generated in situ by partial hydrolysis of 2-substituted 4,5-dicyanoimidazoles under microwave (MW)-assisted conditions in DMF. Structure determination of these IFPs was investigated by IR spectroscopy and a combination of powder X-ray diffraction (PXRD) with structure modeling. The structural models were initially built up from the single-crystal X-ray structure determination of IFP-5 (a cobalt center and 2-methylimidazolate-4-amide-5-imidate linker based framework) and were optimized by using density functional theory calculations. Substitution on position 2 of the linker (R = Cl, Br, and Et) in the isostructural IFP-11, -12, and -13 allowed variation of the potential pore window in 1D hexagonal channels (3.8 to 1.7 Å). The potential of the materials to undergo specific interactions with CO2 was measured by the isosteric heat of adsorption. Further, we resynthesized zinc based IFPs, namely IFP-1 (R = Me), IFP-2 (R = Cl), IFP-3 (R = Br), and IFP-4 (R = Et), and cobalt based IFP-5 under MW-assisted conditions with higher yield. The transition from a nucleation phase to the pure crystalline material of IFP-1 in MW-assisted synthesis depends on reaction time. IFP-1, -3, and -5, which are synthesized by MW-assisted conditions, showed an enhancement of N2 and CO2, compared to the analogous conventional electrical (CE) heating method based materials due to crystal defects.

6.
Biomacromolecules ; 15(11): 3901-14, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25230392

RESUMO

Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.


Assuntos
Biofilmes/efeitos dos fármacos , Fosfatos de Cálcio/antagonistas & inibidores , Metacrilatos/química , Polietilenoglicóis/química , Biofilmes/crescimento & desenvolvimento , Fosfatos de Cálcio/metabolismo , Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/metabolismo , Humanos , Metacrilatos/farmacologia , Polietilenoglicóis/farmacologia , Distribuição Aleatória , Saliva/efeitos dos fármacos , Saliva/metabolismo , Streptococcus gordonii/efeitos dos fármacos , Streptococcus gordonii/fisiologia , Difração de Raios X
7.
Sci Rep ; 14(1): 12114, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802380

RESUMO

Robust chronologies and time equivalent tephra markers are essential to better understand spatial palaeoenvironmental response to past abrupt climatic changes. Identification of well-dated and widely dispersed volcanic ash by tephra and cryptotephra (microscopic volcanic ash) provides time synchronous tie-points and strongly reduces chronological uncertainties. Here, we present the major, minor and trace element analyses of cryptotephra shards in the Dead Sea Deep Drilling sedimentary record (DSDDP 5017-1A) matching the Campanian Ignimbrite (CI). This geochemical identification expands the known dispersal range of the CI to the southeastern Mediterranean, over 2300 km from the volcanic source. Due to the CI eruption occurring near-synchronous with North Atlantic ice surge of Heinrich Event 4 (HE4), this tephra provides insights into regional responses to large-scale climatic change in the Mediterranean. In the Dead Sea, the CI layer is associated with wetter climatic conditions. This contrasts with the contemporaneous occurrence of the CI deposition and dry conditions in the central and eastern Mediterranean suggesting a possible climate time-transgressive expansion of HE4. Our finding underscores the temporal and spatial complexity of regional climate responses and emphasises the importance of tephra as a time marker for studying large-scale climatic changes verses regional variations.

8.
RSC Adv ; 13(50): 35445-35456, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38058559

RESUMO

Lanthanide based ceria nanomaterials are important practical materials due to the redox properties that are useful in the avenues pertaining to technology and life sciences. Sub 10 nm spherical and highly monodisperse Ce1-xYbxO2-y (0.04 ≤ x ≤ 0.22) nanoparticles were synthesized by thermal decomposition, annealed separately at 773 K and 1273 K for 2 hours and characterized. Elemental mapping for Yb3+ doped ceria nanoparticles shows homogeneous distribution of Yb3+ atoms in the ceria with low Yb3+ content annealed at 773 K and 1273 K for 2 hours. However, clusters are observed for 773 K annealed ceria samples with high concentration of Yb3+. These clusters are not detected in 1273 K annealed nanomaterials. Introducing small amounts of Yb3+ ions into the ceria lattice as spectroscopic probes can provide detailed information about the atomic structure and local environments allowing the monitoring of small structural changes, such as clustering. The emission spectra observed at room temperature and at 4 K have a manifold of bands that corresponds to the 2F5/2 → 2F7/2 transition of Yb3+ ions. Some small shifts are observed in the Stark splitting pattern depending on the sample and the annealing conditions. The deconvolution by PARAFAC analysis yielded luminescence decay kinetics as well as the associated luminescence spectra of three species for each of the low Yb3+ doped ceria samples annealed at 773 K and one species for the 1273 K annealed samples. However, the ceria samples with high concentration of Yb3+ annealed at the two temperatures showed only one species with lower decay times as compared to the low Yb3+ doped ceria samples.

9.
ACS Omega ; 8(24): 21594-21604, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360480

RESUMO

New TiO2 hybrid composites were prepared from kaolin clay, predried and carbonized biomass, and titanium tetraisopropoxide and explored for tetracycline (TET) and bisphenol A (BPA) removal from water. Overall, the removal rate is 84% for TET and 51% for BPA. The maximum adsorption capacities (qm) are 30 and 23 mg/g for TET and BPA, respectively. These capacities are far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change the adsorption capacity of the adsorbent. pH changes only slightly change BPA adsorption, while a pH > 7 significantly reduces the adsorption of TET on the material. The Brouers-Sotolongo fractal model best describes the kinetic data for both TET and BPA adsorption, predicting that the adsorption process occurs via a complex mechanism involving various forces of attraction. Temkin and Freundlich isotherms, which best fit the equilibrium adsorption data for TET and BPA, respectively, suggest that adsorption sites are heterogeneous in nature. Overall, the composite materials are much more effective for TET removal from aqueous solution than for BPA. This phenomenon is assigned to a difference in the TET/adsorbent interactions vs the BPA/adsorbent interactions: the decisive factor appears to be favorable electrostatic interactions for TET yielding a more effective TET removal.

10.
Chemistry ; 18(37): 11630-40, 2012 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-22865659

RESUMO

We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1-4, IFP = imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R = Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0-1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and (1)H MAS and (13)C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345-400 °C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO(2) was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH(4) (at 298 K), CO(2) (at 298 K) and H(2) (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO(2) is physisorbed on IFP-1-4 under dry conditions and that both CO(2) and H(2)O are physisorbed on IFP-1 under moist conditions.


Assuntos
Amidas/química , Imidazóis/química , Imidoésteres/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Zinco/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Porosidade , Propriedades de Superfície
11.
Front Pharmacol ; 13: 812888, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847006

RESUMO

Burns are leading causes of mortality and morbidity, including prolonged hospitalization, disfigurement, and disability. Erythropoietin (EPO) is a well-known hormone causing erythropoiesis. However, EPO may play a role in healing acute and chronic wounds due to its anti-inflammatory and pro-regenerative effects. Therefore, the large, prospective, placebo-controlled, randomized, double-blind, multi-center clinical trial "EPO in Burns" was initiated to investigate the effects of EPO versus placebo treatment in severely burned patients. The primary endpoint of "EPO in Burns" was defined as the time elapsed until complete re-epithelialization of a defined split skin graft donor site. Additional analyses of post hoc defined subgroups were performed in view of the primary endpoint. The verum (n 45) and control (n 39) groups were compared with regard to the time it took for study wounds (a predefined split skin graft donor site) to reach the three stages of wound healing (re-epithelialization levels). In addition, the effects of gender (females n 18) and concomitant medications insulin (n 36), non-steroidal anti-inflammatory drugs (NSAIDs) (n 41), and vasopressor agents (n 43) were tested. Life tables were used to compare study groups (EPO vs. placebo) within subgroups. The Cox regression model was applied to evaluate interactions between the study drug (EPO) and concomitant medications for each re-epithelialization level. Using our post hoc defined subgroups, we observed a lower chance of wound healing for women compared to men (in terms of hazard ratio: hr100%: 5.984 [95%-CI: (0.805-44.490), p = 0.080]) in our study population, regardless of the study medication. In addition, results indicated an earlier onset of re-epithelialization in the first days of EPO treatment (EPO: 10% vs. Placebo: 3%). Moreover, the interpretation of the hazard ratio suggested EPO might have a positive, synergistic effect on early stages of re-epithelialization when combined with insulin [hr50%: 1.307 (p = 0.568); hr75%: 1,199 (p = 0.715)], as well as a stabilizing effect on critically ill patients [reduced need for vasopressors in the EPO group (EPO: 44% vs. Placebo 59%)]. However, additional high-quality data from clinical trials designed to address these endpoints are required to gain further insight into these effects.

12.
RSC Adv ; 12(54): 35072-35082, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36540267

RESUMO

Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup.

13.
Sci Rep ; 12(1): 16407, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180510

RESUMO

Dual-energy computed tomography (DECT) is an imaging technique that combines nondestructive morphological cross-sectional imaging of objects and the quantification of their chemical composition. However, its potential to assist investigations in paleontology has not yet been explored. This study investigates quantitative DECT for the nondestructive density- and element-based material decomposition of fossilized bones. Specifically, DECT was developed and validated for imaging-based calcium and fluorine quantification in bones of five fossil vertebrates from different geological time periods and of one extant vertebrate. The analysis shows that DECT material maps can differentiate bone from surrounding sediment and reveals fluorine as an imaging marker for fossilized bone and a reliable indicator of the age of terrestrial fossils. Moreover, the jaw bone mass of Tyrannosaurus rex showed areas of particularly high fluorine concentrations on DECT, while conventional CT imaging features supported the diagnosis of chronic osteomyelitis. These findings highlight the relevance of radiological imaging techniques in the natural sciences by introducing quantitative DECT imaging as a nondestructive approach for material decomposition in fossilized objects, thereby potentially adding to the toolbox of paleontological studies.


Assuntos
Paleontologia , Tomografia Computadorizada por Raios X , Animais , Cálcio , Flúor , Tomografia Computadorizada por Raios X/métodos , Vertebrados
14.
Biomacromolecules ; 12(10): 3753-60, 2011 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-21851066

RESUMO

Polymer brushes on thiol-modified gold surfaces were synthesized by using terminal thiol groups for the surface-initiated free radical polymerization of methacrylic acid and dimethylaminoethyl methacrylate, respectively. Atomic force microscopy shows that the resulting poly(methacrylic acid) (PMAA) and poly(dimethylaminoethyl methacrylate) (PDMAEMA) brushes are homogeneous. Contact angle measurements show that the brushes are pH-responsive and can reversibly be protonated and deprotonated. Mineralization of the brushes with calcium phosphate at different pH yields homogeneously mineralized surfaces, and preosteoblastic cells proliferate on both the nonmineralized and mineralized surfaces. The number of living cells on the mineralized hybrid surfaces is ca. 3 times (PDMAEMA) and 10 times (PMAA) higher than on the corresponding nonmineralized brushes.


Assuntos
Materiais Biocompatíveis/síntese química , Fosfatos de Cálcio/metabolismo , Metacrilatos/síntese química , Nylons/síntese química , Polimetil Metacrilato/síntese química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/farmacologia , Osso e Ossos/química , Osso e Ossos/citologia , Osso e Ossos/fisiologia , Calcificação Fisiológica/fisiologia , Fosfatos de Cálcio/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Metacrilatos/farmacologia , Camundongos , Microscopia de Força Atômica , Nylons/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Processos Fotoquímicos/efeitos da radiação , Polimerização , Polimetil Metacrilato/farmacologia , Prótons , Compostos de Sulfidrila/química , Propriedades de Superfície , Raios Ultravioleta
15.
Materials (Basel) ; 14(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34300916

RESUMO

Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.

16.
Biosensors (Basel) ; 11(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34940272

RESUMO

The imagination of clearly separated core-shell structures is already outdated by the fact, that the nanoparticle core-shell structures remain in terms of efficiency behind their respective bulk material due to intermixing between core and shell dopant ions. In order to optimize the photoluminescence of core-shell UCNP the intermixing should be as small as possible and therefore, key parameters of this process need to be identified. In the present work the Ln(III) ion migration in the host lattices NaYF4 and NaGdF4 was monitored. These investigations have been performed by laser spectroscopy with help of lanthanide resonance energy transfer (LRET) between Eu(III) as donor and Pr(III) or Nd(III) as acceptor. The LRET is evaluated based on the Förster theory. The findings corroborate the literature and point out the migration of ions in the host lattices. Based on the introduced LRET model, the acceptor concentration in the surrounding of one donor depends clearly on the design of the applied core-shell-shell nanoparticles. In general, thinner intermediate insulating shells lead to higher acceptor concentration, stronger quenching of the Eu(III) donor and subsequently stronger sensitization of the Pr(III) or the Nd(III) acceptors. The choice of the host lattice as well as of the synthesis temperature are parameters to be considered for the intermixing process.


Assuntos
Elementos da Série dos Lantanídeos , Nanopartículas , Transferência de Energia , Íons
17.
ACS Appl Mater Interfaces ; 12(47): 52560-52570, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33180455

RESUMO

Covellite-phase CuS and carrollite-phase CuCo2S4 nano- and microstructures were synthesized from tetrachloridometallate-based ionic liquid precursors using a novel, facile, and highly controllable hot-injection synthesis strategy. The synthesis parameters including reaction time and temperature were first optimized to produce CuS with a well-controlled and unique morphology, providing the best electrocatalytic activity toward the oxygen evolution reaction (OER). In an extension to this approach, the electrocatalytic activity was further improved by incorporating Co into the CuS synthesis method to yield CuCo2S4 microflowers. Both routes provide high microflower yields of >80 wt %. The CuCo2S4 microflowers exhibit a superior performance for the OER in alkaline medium compared to CuS. This is demonstrated by a lower onset potential (∼1.45 V vs RHE @10 mA/cm2), better durability, and higher turnover frequencies compared to bare CuS flowers or commercial Pt/C and IrO2 electrodes. Likely, this effect is associated with the presence of Co3+ sites on which a better adsorption of reactive species formed during the OER (e.g., OH, O, OOH, etc.) can be achieved, thus reducing the OER charge-transfer resistance, as indicated by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy measurements.

18.
Beilstein J Nanotechnol ; 10: 119-131, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30680284

RESUMO

A new micro/mesoporous hybrid clay nanocomposite prepared from kaolinite clay, Carica papaya seeds, and ZnCl2 via calcination in an inert atmosphere is presented. Regardless of the synthesis temperature, the specific surface area of the nanocomposite material is between ≈150 and 300 m2/g. The material contains both micro- and mesopores in roughly equal amounts. X-ray diffraction, infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy suggest the formation of several new bonds in the materials upon reaction of the precursors, thus confirming the formation of a new hybrid material. Thermogravimetric analysis/differential thermal analysis and elemental analysis confirm the presence of carbonaceous matter. The new composite is stable up to 900 °C and is an efficient adsorbent for the removal of a water micropollutant, 4-nitrophenol, and a pathogen, E. coli, from an aqueous medium, suggesting applications in water remediation are feasible.

19.
Polymers (Basel) ; 10(3)2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30966310

RESUMO

The article describes the surface modification of 3D printed poly(lactic acid) (PLA) scaffolds with calcium phosphate (CP)/gelatin and CP/chitosan hybrid coating layers. The presence of gelatin or chitosan significantly enhances CP co-deposition and adhesion of the mineral layer on the PLA scaffolds. The hydrogel/CP coating layers are fairly thick and the mineral is a mixture of brushite, octacalcium phosphate, and hydroxyapatite. Mineral formation is uniform throughout the printed architectures and all steps (printing, hydrogel deposition, and mineralization) are in principle amenable to automatization. Overall, the process reported here therefore has a high application potential for the controlled synthesis of biomimetic coatings on polymeric biomaterials.

20.
J Health Pollut ; 8(17): 20-30, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30524846

RESUMO

BACKGROUND: Metal recycling factories (MRFs) have developed rapidly in Nigeria as recycling policies have been increasingly embraced. These MRFs are point sources for introducing potentially toxic elements (PTEs) into environmental media. OBJECTIVES: The aim of this study was to determine the constituents (elemental and mineralogy) of the wastes (slag and particulate matter, (PM)) and soils around the MRFs and to determine the level of pollution within the area. METHODS: Sixty samples (30 slag samples, 15 soil samples and 15 PM samples) were collected for this study. The soils, slag and PM samples were analyzed for elemental constituents using inductively coupled plasma optical emission spectrometry. Mineralogy of the PM was determined using scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), and soil mineralogy was determined by an X-ray diffractometer (XRD). RESULTS: The results of the soil analyses revealed the following concentrations for the selected metals in mg/kg include lead (Pb) (21.0-2399.0), zinc (Zn) (56.0-4188.0), copper (Cu) (10.0-1470.0), nickel (Ni) (6.0-215.0), chromium (Cr) (921.0-1737.0) and cadmium (Cd) (below detectable limit (Bdl)-18.1). For the slags the results were Pb (68.0-.333.0), Zn (1364.0-3062), Cu (119.0-1470.0), Ni (12.0-675.0), Cr (297-1737) and Cd (Bdl-15.8). The results in µg/g for the metal analysis in PM were Pb (4.6-160.0), Zn (18.0-471.0), Cu (2.5-11.0), Ni (0.8-4.2), and Cr (2.5-11.0), while Cd was undetected. The slags are currently utilized for filling the foundations of buildings and roads, providing additional pathways for the introduction of PTEs into the environment from the suspended materials generated from mechanical breakdown of the slags. CONCLUSIONS: The MRFs were found to have impacted the quality of environmental media through the introduction of PTEs, impairing soil quality, in addition to PM, which can have detrimental health consequences. Further studies on the health implications of these pollutants and their impacts on human health are needed. COMPETING INTERESTS: The authors declare no competing financial interests.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa