RESUMO
Here, we present a protocol for using spatial transcriptomics in bone and multi-tissue musculoskeletal formalin-fixed paraffin-embedded (FFPE) samples from mice. We describe steps for tissue harvesting, sample preparation, paraffin embedding, and FFPE sample selection. We detail procedures for sectioning and placement on spatial slides prior to imaging, decrosslinking, library preparation, and final analyses of the sequencing data. The complete protocol takes ca. 18 days for mouse femora with adjacent muscle; of this time, >50% is required for mineralized tissue decalcification. For complete details on the use and execution of this protocol, please refer to Wehrle et al.1 and Mathavan et al.2.
Assuntos
Formaldeído , Inclusão em Parafina , Fixação de Tecidos , Animais , Camundongos , Inclusão em Parafina/métodos , Formaldeído/química , Fixação de Tecidos/métodos , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Osso e Ossos/metabolismo , Sistema Musculoesquelético/metabolismoRESUMO
Direct laser interference patterning (DLIP) is used to produce periodic line-like patterns on titanium surfaces. An Nd:YAG laser operating at 532 nm wavelength with a pulse duration of 8 ns is used for the laser patterning process. The generated periodic patterns with spatial periods of 5, 10, and 20 µm are produced with energy densities between 0.44 and 2.6 J cm-2 with a single laser pulse. With variation of energy density, different shapes of the arising topography are observed due to the development of the solidification front of the molten material at the maxima positions. Characterization of the surface chemistry shows that the DLIP treatment enhances the content of nitrogen of the titanium reactive layer from 3.9% up to 23.4%. The structural analysis near the titanium surface shows no changes in microstructure after the laser treatment. Contact angles between 65° and 79° are measured on both structured and turned reference surfaces. Cell viability of human osteoblasts on line-like patterned surfaces after 7 d in cultivation medium is 16% higher compared to the grit-blasted and acid-etched references. Finally, the possibility of patterning complex 3D dental implants is shown.
Assuntos
Implantes Dentários , Lasers , Teste de Materiais , Osteoblastos/metabolismo , Titânio/química , Linhagem Celular , Humanos , Osteoblastos/citologia , Propriedades de SuperfícieRESUMO
Substrate topography can have profound effects on initial bacterial adhesion during biofilm formation. We applied Staphylococcus epidermidis and Escherichia coli cells onto periodically structured substrates with different structure dimensions, structure types and wetting properties. We found a strong dependence of cell retention on the structure dimensions of the applied substrates. Periodicities in the range of the cell size increased, whereas smaller periodicities decreased cell retention, independent of contact time (minutes to hours) and hydrophobicity. These novel insights on the role of surface topography on bacterial retention might facilitate the development of non-fouling surfaces in the future.