Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992862

RESUMO

We have generated polyclonal and monoclonal antibodies by genetic immunization over the last two decades. In this paper, we present our most successful methodology acquired over these years and present the animals in which we obtained the highest rates of success. The technique presented is convenient, easy, affordable, and generates antibodies against mammalian proteins in their native form. This protocol requires neither expensive equipment, such as a gene gun, nor sophisticated techniques such as the conjugation of gold microspheres, electroporation, or surgery to inject in lymph nodes. The protocol presented uses simply the purified plasmid expressing the protein of interest under a strong promoter, which is injected at intramuscular and intradermal sites. This technique was tested in five species. Guinea pigs were the animals of choice for the production of polyclonal antibodies. Monoclonal antibodies could be generated in mice by giving, as a last injection, a suspension of transfected cells. The antibodies detected their antigens in their native forms. They were highly specific with very low non-specific background levels, as assessed by immune-blots, immunocytochemistry, immunohistochemistry and flow cytometry. We present herein a detailed and simple procedure to successfully raise specific antibodies against native proteins.


Assuntos
Anticorpos Monoclonais/biossíntese , DNA Complementar/imunologia , Proteínas/imunologia , Animais , Células COS , Chlorocebus aethiops , Cricetinae , Feminino , Cobaias , Células HEK293 , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Ratos , Ratos Sprague-Dawley
2.
PLoS One ; 12(9): e0184499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28898276

RESUMO

Liver myofibroblasts are specialized effector cells that drive hepatic fibrosis, a hallmark process of chronic liver diseases, leading to progressive scar formation and organ failure. Liver myofibroblasts are increasingly recognized as heterogeneous with regards to their origin, phenotype, and functions. For instance, liver myofibroblasts express cell markers that are universally represented such as, ItgαV and Pdgfrß, or restricted to a given subpopulation such as, Lrat exclusively expressed in hepatic stellate cells, and Gpm6a in mesothelial cells. To study liver myofibroblasts in vitro, we have previously generated and characterized a SV40-immortalized polyclonal rat activated portal fibroblast cell line called RGF-N2 expressing multiple mesothelin mRNA transcripts. Mesothelin, a cell-surface molecule expressed in normal mesothelial cells and overexpressed in several cancers such as, mesothelioma and cholangiocarcinoma, was recently identified as a key regulator of portal myofibroblast proliferation, and fibrosis progression in the setting of chronic cholestatic liver disease. Here, we identify novel mesothelin splice variants expressed in rat activated portal fibroblasts. RGF-N2 portal fibroblast cDNA was used as template for insertion of hemagglutinin tag consensus sequence into the complete open reading frame of rat mesothelin variant coding sequences by extension PCR. Purified amplicons were subsequently cloned into an expression vector for in vitro translation and transfection in monkey COS7 fibroblasts, before characterization of fusion proteins by immunoblot and immunofluorescence. We show that rat activated portal fibroblasts, hepatic stellate cells, and cholangiocarcinoma cells express wild-type mesothelin and additional splice variants, while mouse activated hepatic stellate cells appear to only express wild-type mesothelin. Notably, rat mesothelin splice variants differ from the wild-type isoform by their protein properties and cellular distribution in transfected COS7 fibroblasts. We conclude that mesothelin is a marker of activated murine liver myofibroblasts. Mesothelin gene expression and regulation may be critical in liver myofibroblasts functions and fibrosis progression.


Assuntos
Proteínas Ligadas por GPI/genética , Fígado/metabolismo , Miofibroblastos/metabolismo , Splicing de RNA , Animais , Células COS , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Proteínas Ligadas por GPI/metabolismo , Células Estreladas do Fígado/metabolismo , Fígado/citologia , Masculino , Mesotelina , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa