Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 16: 117, 2015 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-26410792

RESUMO

BACKGROUND: Ozone pollution has adverse effects on respiratory health in children and adults. This study was carried out in the mouse model to investigate the influence of age and to define the role of toll-like receptor four (TLR4) in the lung response to ozone exposure during postnatal development. METHODS: Female mice (1 to 6 weeks of age) were exposed for 3 h to ozone (1 part per million) or filtered air. Analyses were carried out at six and 24 h after completion of exposure, to assess the effects on lung permeability, airway neutrophilia, expression of antioxidants and chemokines, and mucus production. The role of TLR4 was defined by examining TLR4 expression in the lung during development, and by investigating the response to ozone in tlr4-deficient mice. RESULTS: Metallothionein-1, calcitonin gene-related product, and chemokine C-X-C ligand (CXCL) five were consistent markers induced by ozone throughout development. Compared with adults, neonates expressed lower levels of pulmonary TLR4 and responded with increased mucus production, and developed an attenuated response to ozone characterized by reduced albumin leakage and neutrophil influx into the airways, and lower expression of CXCL1 and CXCL2 chemokines. Examination of the responses in tlr4-deficient mice indicated that ozone-mediated airway neutrophilia, but not albumin leakage or mucus production were dependent on TLR4. CONCLUSIONS: Collectively, the data demonstrate that the response to ozone is determined by age and is partially dependent on TLR4 signaling. The reduced responsiveness of the neonatal lung to ozone may be due at least in part to insufficient pulmonary TLR4 expression.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Receptor 4 Toll-Like/efeitos dos fármacos , Fatores Etários , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Quimiocinas/metabolismo , Feminino , Exposição por Inalação , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Muco/metabolismo , Neuropeptídeos/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Albumina Sérica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
2.
Respir Res ; 14: 110, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24138138

RESUMO

BACKGROUND: Airway inflammation and airway remodeling are the key contributors to airway hyperresponsiveness (AHR), a characteristic feature of asthma. Both processes are regulated by Transforming Growth Factor (TGF)-ß. Caveolin 1 (Cav1) is a membrane bound protein that binds to a variety of receptor and signaling proteins, including the TGF-ß receptors. We hypothesized that caveolin-1 deficiency promotes structural alterations of the airways that develop with age will predispose to an increased response to allergen challenge. METHODS: AHR was measured in Cav1-deficient and wild-type (WT) mice 1 to 12 months of age to examine the role of Cav1 in AHR and the relative contribution of inflammation and airway remodeling. AHR was then measured in Cav1-/- and WT mice after an ovalbumin-allergen challenge performed at either 2 months of age, when remodeling in Cav1-/- and WT mice was equivalent, and at 6 months of age, when the Cav1-/- mice had established airway remodeling. RESULTS: Cav1-/- mice developed increased thickness of the subepithelial layer and a correspondingly increased AHR as they aged. In addition, allergen-challenged Cav1-/- mice had an increase in AHR greater than WT mice that was largely independent of inflammation. Cav1-/- mice challenged at 6 months of age have decreased AHR compared to those challenged at 2 months with correspondingly decreased BAL IL-4 and IL-5 levels, inflammatory cell counts and percentage of eosinophils. In addition, in response to OVA challenge, the number of goblet cells and α-SMA positive cells in the airways were reduced with age in response to OVA challenge in contrast to an increased collagen deposition further enhanced in absence of Cav1. CONCLUSION: A lack of Cav1 contributed to the thickness of the subepithelial layer in mice as they aged resulting in an increase in AHR independent of inflammation, demonstrating the important contribution of airway structural changes to AHR. In addition, age in the Cav1-/- mice is a contributing factor to airway remodeling in the response to allergen challenge.


Assuntos
Envelhecimento/fisiologia , Remodelação das Vias Aéreas/fisiologia , Asma/fisiopatologia , Hiper-Reatividade Brônquica/fisiopatologia , Caveolina 1/deficiência , Pneumonia/fisiopatologia , Actinas/metabolismo , Animais , Asma/induzido quimicamente , Hiper-Reatividade Brônquica/induzido quimicamente , Caveolina 1/genética , Caveolina 1/fisiologia , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo
3.
Toxicol Sci ; 138(1): 175-90, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24336422

RESUMO

Ozone pollution is associated with adverse effects on respiratory health in adults and children but its effects on the neonatal lung remain unknown. This study was carried out to define the effect of acute ozone exposure on the neonatal lung and to profile the transcriptome response. Newborn mice were exposed to ozone or filtered air for 3h. Total RNA was isolated from lung tissues at 6 and 24h after exposure and was subjected to microarray gene expression analysis. Compared to filtered air-exposed littermates, ozone-exposed newborn mice developed a small but significant neutrophilic airway response associated with increased CXCL1 and CXCL5 expression in the lung. Transcriptome analysis indicated that 455 genes were down-regulated and 166 genes were up-regulated by at least 1.5-fold at 6h post-ozone exposure (t-test, p < .05). At 24h, 543 genes were down-regulated and 323 genes were up-regulated in the lungs of ozone-exposed, compared to filtered air-exposed, newborn mice (t-test, p < .05). After controlling for false discovery rate, 50 genes were identified as significantly down-regulated and only a few (RORC, GRP, VREB3, and CYP2B6) were up-regulated at 24h post-ozone exposure (q < .05). Gene ontology enrichment analysis revealed that cell cycle-associated functions including cell division/proliferation were the most impacted pathways, which were negatively regulated by ozone exposure, an adverse effect that was associated with reduced bromo-deoxyuridine incorporation. These results demonstrate that acute ozone exposure alters cell proliferation in the developing neonatal lung through a global suppression of cell cycle function.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/efeitos dos fármacos , Ozônio/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL1/genética , Quimiocina CXCL5/genética , Regulação para Baixo , Perfilação da Expressão Gênica , Exposição por Inalação , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Traqueia/efeitos dos fármacos , Traqueia/ultraestrutura , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa