Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angiogenesis ; 27(1): 67-89, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37695358

RESUMO

FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.


Assuntos
Células Endoteliais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Células Endoteliais/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Clatrina/metabolismo , Peixe-Zebra/metabolismo
3.
Processes (Basel) ; 6(5)2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-34262852

RESUMO

Developing and improving mechanism-oriented computational models to better explain biological phenomena is a dynamic and expanding frontier. As the complexity of targeted phenomena has increased, so too has the diversity in methods and terminologies, often at the expense of clarity, which can make reproduction challenging, even problematic. To encourage improved semantic and methodological clarity, we describe the spectrum of Mechanism-oriented Models being used to develop explanations of biological phenomena. We cluster explanations of phenomena into three broad groups. We then expand them into seven workflow-related model types having distinguishable features. We name each type and illustrate with examples drawn from the literature. These model types may contribute to the foundation of an ontology of mechanism-based biomedical simulation research. We show that the different model types manifest and exert their scientific usefulness by enhancing and extending different forms and degrees of explanation. The process starts with knowledge about the phenomenon and continues with explanatory and mathematical descriptions. Those descriptions are transformed into software and used to perform experimental explorations by running and examining simulation output. The credibility of inferences is thus linked to having easy access to the scientific and technical provenance from each workflow stage.

4.
Methods Enzymol ; 467: 461-497, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19897104

RESUMO

Most physiological processes are subjected to molecular regulation by growth factors, which are secreted proteins that activate chemical signal transduction pathways through binding of specific cell-surface receptors. One particular growth factor system involved in the in vivo regulation of blood vessel growth is called the vascular endothelial growth factor (VEGF) system. Computational and numerical techniques are well suited to handle the molecular complexity (the number of binding partners involved, including ligands, receptors, and inert binding sites) and multiscale nature (intratissue vs. intertissue transport and local vs. systemic effects within an organism) involved in modeling growth factor system interactions and effects. This chapter introduces a variety of in silico models that seek to recapitulate different aspects of VEGF system biology at various spatial and temporal scales: molecular-level kinetic models focus on VEGF ligand-receptor interactions at and near the endothelial cell surface; mesoscale single-tissue 3D models can simulate the effects of multicellular tissue architecture on the spatial variation in VEGF ligand production and receptor activation; compartmental modeling allows efficient prediction of average interstitial VEGF concentrations and cell-surface VEGF signaling intensities across multiple large tissue volumes, permitting the investigation of whole-body intertissue transport (e.g., vascular permeability and lymphatic drainage). The given examples will demonstrate the utility of computational models in aiding both basic science and clinical research on VEGF systems biology.


Assuntos
Simulação por Computador , Modelos Anatômicos , Modelos Biológicos , Mapeamento de Interação de Proteínas/métodos , Receptores de Fatores de Crescimento/metabolismo , Animais , Transporte Biológico/fisiologia , Matriz Extracelular/metabolismo , Terapia Genética , Humanos , Matemática , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Neovascularização Fisiológica , Neuropilina-1/metabolismo , Consumo de Oxigênio , Porosidade , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa