Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39203257

RESUMO

Efficient and sustainable energy storage remains a critical challenge in the advancement of energy technologies. This study presents the fabrication and electrochemical evaluation of a self-supporting electrode material composed of MnO2 nanorods grown directly on a carbon paper and carbon nanotube (CNT) substrate using a hydrothermal method. The resulting CNT/MnO2 electrodes exhibit a unique structural architecture with a high surface area and a three-dimensional hierarchical arrangement, contributing to a substantial electrochemical surface area. Electrochemical testing reveals remarkable performance characteristics, including a specific capacitance of up to 316.5 F/g, which is 11 times greater than that of conventional CP/MnO2 electrodes. Moreover, the CNT/MnO2 electrodes demonstrate outstanding retention capacity, exhibiting a remarkable 165% increase over 10,000 cycles. Symmetric supercapacitor devices utilizing CNT/MnO2 electrodes maintain a large voltage window of 3 V and a specific capacitance as high as 200 F/g. These results underscore the potential of free-standing CNT/MnO2 electrodes to advance the development of high-performance supercapacitors, which can be crucial for efficient and sustainable energy storage solutions in various industrial and manufacturing applications.

2.
Analyst ; 136(20): 4211-6, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21874203

RESUMO

The paper reports on a novel localized surface plasmon resonance (LSPR) substrate architecture for the immobilization and detection of histidine-tagged peptides. The LSPR interface consists of an ITO (indium tin oxide) substrate coated with gold nanostructures. The latter are obtained by thermal deposition of a thin (2 nm thick) gold film followed by post-annealing at 500 °C. The LSPR interface was coated with poly[3-(pyrrolyl)carboxylic acid] thin films using electrochemical means. The ability of the LSPR interfaces coated with poly[3-(pyrrolyl)carboxylic acid] to chelate copper ions was investigated. Once loaded with metal ions, the modified LSPR interface was able to bind specifically to histidine-tagged peptides. The binding process was followed using LSPR.


Assuntos
Técnicas Biossensoriais/métodos , Ácidos Carboxílicos/química , Histidina/química , Oligopeptídeos/química , Peptídeos/análise , Pirróis/química , Ressonância de Plasmônio de Superfície , Cobre/química , Ouro/química , Nanopartículas Metálicas/química , Espectrofotometria Ultravioleta , Compostos de Estanho/química
3.
Nanoscale Res Lett ; 9(1): 585, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25386103

RESUMO

The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface.

4.
Nanoscale Res Lett ; 9(1): 482, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25435830

RESUMO

In this work, we report the fabrication of ordered silicon structures by chemical etching of silicon in vanadium oxide (V2O5)/hydrofluoric acid (HF) solution. The effects of the different etching parameters including the solution concentration, temperature, and the presence of metal catalyst film deposition (Pd) on the morphologies and reflective properties of the etched Si surfaces were studied. Scanning electron microscopy (SEM) was carried out to explore the morphologies of the etched surfaces with and without the presence of catalyst. In this case, the attack on the surfaces with a palladium deposit begins by creating uniform circular pores on silicon in which we distinguish the formation of pyramidal structures of silicon. Fourier transform infrared spectroscopy (FTIR) demonstrates that the surfaces are H-terminated. A UV-Vis-NIR spectrophotometer was used to study the reflectance of the structures obtained. A reflectance of 2.21% from the etched Si surfaces in the wavelength range of 400 to 1,000 nm was obtained after 120 min of etching while it is of 4.33% from the Pd/Si surfaces etched for 15 min.

5.
Nanoscale Res Lett ; 6(1): 412, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21711937

RESUMO

In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization.The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa