Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Med Virol ; 96(1): e29349, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185937

RESUMO

Although the COVID-19 pandemic has officially ended, the persistent challenge of long-COVID or post-acute COVID sequelae (PASC) continues to impact societies globally, highlighting the urgent need for ongoing research into its mechanisms and therapeutic approaches. Our team has recently developed a novel humanized ACE2 mouse model (hACE2ki) designed explicitly for long-COVID/PASC research. This model exhibits human ACE2 expression in tissue and cell-specific patterns akin to mouse Ace2. When we exposed young adult hACE2ki mice (6 weeks old) to various SARS-CoV-2 lineages, including WA, Delta, and Omicron, at a dose of 5 × 105 PFU/mouse via nasal instillation, the mice demonstrated distinctive phenotypes characterized by differences in viral load in the lung, trachea, and nasal turbinate, weight loss, and changes in pro-inflammatory cytokines and immune cell profiles in bronchoalveolar lavage fluid. Notably, no mortality was observed in this age group. Further, to assess the model's relevance for long-COVID studies, we investigated tau protein pathologies, which are linked to Alzheimer's disease, in the brains of these mice post SARS-CoV-2 infection. Our findings revealed the accumulation and longitudinal propagation of tau, confirming the potential of our hACE2ki mouse model for preclinical studies of long-COVID.


Assuntos
COVID-19 , Animais , Humanos , Camundongos , Adulto Jovem , Enzima de Conversão de Angiotensina 2/genética , Modelos Animais de Doenças , Progressão da Doença , Pandemias , Síndrome de COVID-19 Pós-Aguda , SARS-CoV-2
2.
Cell Mol Life Sci ; 79(4): 202, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35325330

RESUMO

The c-Jun N-terminal kinase (JNK) signaling cascade is a mitogen-activated protein kinase (MAPK) signaling pathway that can be activated in response to a wide range of environmental stimuli. Based on the type, degree, and duration of the stimulus, the JNK signaling cascade dictates the fate of the cell by influencing gene expression through its substrate transcription factors. Oxidative stress is a result of a disturbance in the pro-oxidant/antioxidant homeostasis of the cell and is associated with a large number of diseases, such as neurodegenerative disorders, cancer, diabetes, cardiovascular diseases, and disorders of the immune system, where it activates the JNK signaling pathway. Among different biological roles ascribed to the intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are signaling hub functions, as intrinsic disorder allows proteins to undertake multiple interactions, each with a different consequence. In order to ensure precise signaling, the cellular abundance of IDPs is highly regulated, and mutations or changes in abundance of IDPs/IDPRs are often associated with disease. In this study, we have used a combination of six disorder predictors to evaluate the presence of intrinsic disorder in proteins of the oxidative stress-induced JNK signaling cascade, and as per our findings, none of the 18 proteins involved in this pathway are ordered. The highest level of intrinsic disorder was observed in the scaffold proteins, JIP1, JIP2, JIP3; dual specificity phosphatases, MKP5, MKP7; 14-3-3ζ and transcription factor c-Jun. The MAP3Ks, MAP2Ks, MAPKs, TRAFs, and thioredoxin were the proteins that were predicted to be moderately disordered. Furthermore, to characterize the predicted IDPs/IDPRs in the proteins of the JNK signaling cascade, we identified the molecular recognition features (MoRFs), posttranslational modification (PTM) sites, and short linear motifs (SLiMs) associated with the disordered regions. These findings will serve as a foundation for experimental characterization of disordered regions in these proteins, which represents a crucial step for a better understanding of the roles of IDPRs in diseases associated with this important pathway.


Assuntos
Proteínas Intrinsicamente Desordenadas , Sistema de Sinalização das MAP Quinases , Proteínas 14-3-3/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Estresse Oxidativo , Conformação Proteica
3.
Exp Parasitol ; 253: 108593, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595879

RESUMO

Targeted delivery has not been achieved for anthelmintic treatment, resulting in the requirement of excess drug dose leading to side effects and therapeutic resistance. Gastrointestinal helminths take up lipid droplets from digestive fluid for energy production, egg development, and defense which inspired us to develop biocompatible and orally administrable albendazole-loaded solid lipid nanoparticles (SLN-A) that were derived from beeswax and showed drug loading efficiency of 83.3 ± 6.5 mg/g and sustained-release properties with 84.8 ± 2.5% of drug released at pH 6.4 within 24 h at 37 °C. Rhodamine B-loaded SLN showed time-dependent release and distribution of dye in-vitro in Haemonchus contortus. The sustained-release property was shown by the particles that caused enhancement of albendazole potency up to 50 folds. Therefore, this formulation has immense potential as an anthelminthic drug delivery vehicle that will be able to reduce the dose and drug-induced side effects by enhancing the bioavailability of the drug.


Assuntos
Haemonchus , Animais , Albendazol/farmacologia , Preparações de Ação Retardada
4.
Cell Mol Life Sci ; 78(4): 1655-1688, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32712910

RESUMO

The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein-protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.


Assuntos
Betacoronavirus/química , Quirópteros/virologia , Infecções por Coronavirus/virologia , Proteínas Intrinsicamente Desordenadas/química , Proteoma/análise , Proteínas Virais/química , Animais , Proteínas de Ligação a DNA/química , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Motivos de Ligação ao RNA , SARS-CoV-2/química , Relação Estrutura-Atividade
5.
Med Res Rev ; 41(5): 2689-2745, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32783388

RESUMO

The exact molecular mechanisms associated with Alzheimer's disease (AD) pathology continue to represent a mystery. In the past decades, comprehensive data were generated on the involvement of different signaling pathways in the AD pathogenesis. However, the utilization of signaling pathways as potential targets for the development of drugs against AD is rather limited due to the immense complexity of the brain and intricate molecular links between these pathways. Therefore, finding a correlation and cross-talk between these signaling pathways and establishing different therapeutic targets within and between those pathways are needed for better understanding of the biological events responsible for the AD-related neurodegeneration. For example, autophagy is a conservative cellular process that shows link with many other AD-related pathways and is crucial for maintenance of the correct cellular balance by degrading AD-associated pathogenic proteins. Considering the central role of autophagy in AD and its interplay with many other pathways, the finest therapeutic strategy to fight against AD is the use of autophagy as a target. As an essential step in this direction, this comprehensive review represents recent findings on the individual AD-related signaling pathways, describes key features of these pathways and their cross-talk with autophagy, represents current drug development, and introduces some of the multitarget beneficial approaches and strategies for the therapeutic intervention of AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Autofagia , Encéfalo/metabolismo , Humanos , Transdução de Sinais
6.
Microb Pathog ; 158: 105041, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34119626

RESUMO

The intrinsically disordered proteins/regions (IDPs/IDPRs) are known to be responsible for multiple cellular processes and are associated with many chronic diseases. In viruses, the existence of a disordered proteome is also proven and is related to its conformational dynamics inside the host. The SARS-CoV-2 has a large proteome, in which, structure and functions of all proteins are not known yet, along with non-structural protein 11 (nsp11). In this study, we have performed extensive experimentation on nsp11. Our results based on the CD spectroscopy gives characteristic disordered spectrum for IDPs. Further, we investigated the conformational behavior of nsp11 in the presence of membrane mimetic environment, α-helix inducer, and natural osmolyte. In the presence of negatively charged and neutral liposomes, nsp11 remains disordered. However, with SDS micelle, it adopted an α-helical conformation, suggesting the helical propensity of nsp11. Finally, we again confirmed the IDP behavior of nsp11 using MD simulations. In future, this conformational dynamic study could help to clarify its functional importance in SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos , Humanos , Conformação Proteica , Solventes
7.
Cell Mol Life Sci ; 77(20): 4163-4208, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31894361

RESUMO

Alzheimer's disease (AD) is a leading cause of age-related dementia worldwide. Despite more than a century of intensive research, we are not anywhere near the discovery of a cure for this disease or a way to prevent its progression. Among the various molecular mechanisms proposed for the description of the pathogenesis and progression of AD, the amyloid cascade hypothesis, according to which accumulation of a product of amyloid precursor protein (APP) cleavage, amyloid ß (Aß) peptide, induces pathological changes in the brain observed in AD, occupies a unique niche. Although multiple proteins have been implicated in this amyloid cascade signaling pathway, their structure-function relationships are mostly unexplored. However, it is known that two major proteins related to AD pathology, Aß peptide, and microtubule-associated protein tau belong to the category of intrinsically disordered proteins (IDPs), which are the functionally important proteins characterized by a lack of fixed, ordered three-dimensional structure. IDPs and intrinsically disordered protein regions (IDPRs) play numerous vital roles in various cellular processes, such as signaling, cell cycle regulation, macromolecular recognition, and promiscuous binding. However, the deregulation and misfolding of IDPs may lead to disturbed signaling, interactions, and disease pathogenesis. Often, molecular recognition-related IDPs/IDPRs undergo disorder-to-order transition upon binding to their biological partners and contain specific disorder-based binding motifs, known as molecular recognition features (MoRFs). Knowing the intrinsic disorder status and disorder-based functionality of proteins associated with amyloid cascade signaling pathway may help to untangle the mechanisms of AD pathogenesis and help identify therapeutic targets. In this paper, we have used multiple computational tools to evaluate the presence of intrinsic disorder and MoRFs in 27 proteins potentially relevant to the amyloid cascade signaling pathway. Among these, BIN1, APP, APOE, PICALM, PSEN1 and CD33 were found to be highly disordered. Furthermore, their disorder-based binding regions and associated short linear motifs have also been identified. These findings represent important foundation for the future research, and experimental characterization of disordered regions in these proteins is required to better understand their roles in AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transdução de Sinais/fisiologia , Doença de Alzheimer/patologia , Amiloidose/metabolismo , Amiloidose/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Proteínas tau/metabolismo
8.
Biochem Biophys Res Commun ; 524(2): 446-452, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32007275

RESUMO

The cMyb trans-activation domain is one of the model systems to understand the folding and binding mechanisms in intrinsically disordered proteins. cMyb (291-315) TAD (cMyb TAD) upon interaction with KIX plays a crucial role in transcriptional regulation. However, nothing is known regarding its aggregation behaviour on change of buffer conditions or stressed environment. Notably, most of the disease-associated amyloid-forming proteins such as Aß, Tau, α-synuclein, and amylin are natively unstructured. Nevertheless, to date, very fewer evidence on aggregation behaviours on TAD domains are available. Therefore, this is necessary to investigate the aggregation propensity of intrinsically disordered cMyb TAD domain in isolation. As an essential step in that direction, we have extensively studied the aggregation behaviour of cMyb TAD using the standard approaches for aggregation studies and systematically probed the amyloid conformations. These aggregates are ThT and ANS-positive whose amyloid nature was also confirmed by Far-UV CD spectroscopic studies suggesting that cMyb TAD fibrils are rich in ß-sheet secondary structure, transmission electron microscopy revealed the formation of characteristic long branched amyloid fibrils of 6-16 nm diameter, and MTT assay in SH-SY5Y neuroblastoma cells suggest that these aggregates are cytotoxic. This amyloid nature of cMyb TAD may affect its binding with KIX and alter cMyb function (transcriptional regulation) under acidic/stressed conditions.


Assuntos
Amiloide/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Amiloide/química , Linhagem Celular , Humanos , Proteínas Intrinsicamente Desordenadas/química , Agregados Proteicos , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína , Proteínas Proto-Oncogênicas c-myb/química
9.
Arch Biochem Biophys ; 689: 108459, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32592801

RESUMO

Although the mystery molecule p53 has been studied extensively, still several unknown mechanisms need to be elucidated. Being a central hub of cellular signaling pathways, the function of p53 is precisely executed synergistically by its intrinsically disordered and structural domains. The disordered N-terminal region further modulates p53 function by undergoing promiscuous binding and folding with several partners with the help of TAD1 and TAD2 motifs. Among these regions, a significant contribution is made by TAD2 in terms of binding affinities. This heterogeneity in p53 TAD region motivates to employ a reductionist approach to understand the folding behavior of TAD2 region independently under a broad range of different pH, temperature and solvent conditions. Since the intracellular environment is complex and crowded with a variety of molecules providing different type of surfaces from polar to hydrophobic, it is mandatory to characterize the conformational heterogeneity of disordered proteins to completely understand their function. Different types of alcohols were used to estimate the structure forming capabilities of the TAD2 peptides using circular dichroism, fluorescence and lifetime spectroscopy. The alcohols ethanol, TFE and HFIP were previously known to induce increasing levels of hydrophobic environments in water-alcohol mixtures respectively. Our results have shown that TAD2 peptide undergoes a dehydration dependent induction of hydrophobic interactions leading towards structural transitions in presence of organic solvents. This study is highlighting the importance of hydrophobic surfaces playing a crucial role in TAD2 interaction and conformational transitions.


Assuntos
Proteína Supressora de Tumor p53/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química , Peptídeos/química , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Dobramento de Proteína , Solventes/química
10.
J Pept Sci ; 25(3): e3151, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30714272

RESUMO

Protegrin-4 (PG-4) is a member of the porcine leukocyte protegrins family of cysteine-rich antimicrobial peptides (AMPs) isolated from Sus scrofa. It consists of 18 amino acid residues and works as a part of innate immune system. In this study, we examined the intrinsic aggregation propensity of this AMP using multiple computational algorithms, namely, TANGO, AGGRESCAN, FOLDAMYLOID, AMYLPRED, and ZYGGREGATOR, and found that the peptide is predicted to have a high propensity for the ß sheet formation that disposes this peptide to be amyloidogenic. Under in vitro conditions, PG-4 formed visible aggregates and displayed the hallmark properties of typical amyloids such as enhanced binding of Congo red, increased fluorescence with Thioflavin-T, and fibrillar morphology under transmission electron microscopy. Then we examined its antimicrobial activity against Bacillus subtilis and found that the aggregated peptide retained its antimicrobial activity. Additionally, the aggregates remain non-toxic to the HEK293 and Caco2 cells. Our study suggests that the inherent aggregation properties of AMP can rationally be explored as a potential source of peptide-based antimicrobials with enhanced stability.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Células CACO-2 , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Sus scrofa
11.
J Pept Sci ; 25(4): e3152, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784133

RESUMO

Seminal amyloids are well known for their role in enhancing HIV infection. Among all the amyloidogenic peptides identified in human semen, PAP248-286 was found to be the most active and was termed as semen-derived enhancer of viral infection (SEVI). Although amyloidogenic nature of the peptide is mainly linked with enhancement of the viral infection, the most active physiological conformation of the aggregated peptide remains inconclusive. Lipids are known to modulate aggregation pathway of a variety of proteins and peptides and constitute one of the most abundant biomolecules in human semen. PAP248-286 significantly differs from the other known amyloidogenic peptides, including Aß and IAPP, in terms of critical concentration, surface charge, fibril morphology, and structural transition during aggregation. Hence, in the present study, we aimed to assess the effect of a lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), on PAP248-286 aggregation and the consequent conformational outcomes. Our initial observation suggested that the presence of the lipid considerably influenced the aggregation of PAP248-286 . Further, ZDOCK and MD simulation studies of peptide multimerization have suggested that the hydrophobic residues at C-terminus are crucial for PAP248-286 aggregation and are anticipated to be major DOPC-interacting partners. Therefore, we further assessed the aggregation behaviour of C-terminal (PAP273-286 ) fragment of PAP248-286 and observed that DOPC possesses the ability to interfere with the aggregation behaviour of both the peptides used in the current study. Mechanistically, we propose that the presence of DOPC causes considerable inhibition of the peptide aggregation by interfering with the peptide's disordered state to ß-sheet transition.


Assuntos
Peptídeos/antagonistas & inibidores , Fosfatidilcolinas/farmacologia , Sêmen/química , Humanos , Cinética , Fosfatidilcolinas/química , Agregados Proteicos/efeitos dos fármacos
12.
Arch Biochem Biophys ; 656: 38-45, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30205085

RESUMO

Thioredoxin glutathione reductase (TGRsec) is a multi-domain flavoprotein that plays a principal role in redox homeostasis maintenance. We have previously demonstrated the role of selenocysteine in maintaining TGRsec structure-function, but the role of the glutaredoxin (Grx) domain and FAD is still unclear. In the present study, the urea-induced unfolding of recombinant Fasciola gigantica TGRsec (FgTGRsec) and its N-terminal truncated variant (ΔNTD-FgTGRsec) were examined to understand the role of the Grx domain and FAD in the stabilization of FgTGRsec and ΔNTD-FgTGRsec. Our results showed that both proteins underwent unfolding in a three state manner. First, the protein undergoes a conformational transition rendering a near-native state with no FAD bound, and then full unfolding of the apo-dimer occurs without dissociation. The Grx domain stabilized the global FgTGRsec structure and positively regulated FgTGRsec activity, and alteration in the FAD microenvironment was directly proportional to the loss of thioredoxin reductase (TrxR) and glutathione reductase activities. Based on these results, we concluded that the Grx domain stabilizes the full-length FgTGRsec protein for efficient catalysis. Thus, we suggest that in platyhelminth parasites, during evolution, the Grx domain merged with the TrxR domain to confer higher catalytic activity and provide additional structural stability to the full-length TGR.


Assuntos
Flavina-Adenina Dinucleotídeo/química , Glutarredoxinas/química , Proteínas de Helminto/química , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Domínios Proteicos , Animais , Catálise , Ácido Ditionitrobenzoico/metabolismo , Fasciola/enzimologia , Flavina-Adenina Dinucleotídeo/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/isolamento & purificação , Glutarredoxinas/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/isolamento & purificação , Proteínas de Helminto/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Mutação , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/isolamento & purificação , NADH NADPH Oxirredutases/metabolismo , NADP/metabolismo , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica , Desdobramento de Proteína/efeitos dos fármacos , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação , Tiorredoxinas/metabolismo , Triptofano/química , Ureia/química
13.
J Cell Mol Med ; 20(7): 1392-407, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27028664

RESUMO

The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.


Assuntos
Doença de Alzheimer/metabolismo , Terapia de Alvo Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Modelos Biológicos
14.
Adv Sci (Weinh) ; 11(16): e2303775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327094

RESUMO

The spread of prion-like protein aggregates is a common driver of pathogenesis in various neurodegenerative diseases, including Alzheimer's disease (AD) and related Tauopathies. Tau pathologies exhibit a clear progressive spreading pattern that correlates with disease severity. Clinical observation combined with complementary experimental studies has shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several cell surface receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remain poorly understood. Here, it is shown that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF but not the monomer of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. These results identify neuronal Lag3 as a receptor of pathologic Tau in the brain,and for AD and related Tauopathies, a therapeutic target.


Assuntos
Proteína do Gene 3 de Ativação de Linfócitos , Neurônios , Tauopatias , Proteínas tau , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Antígenos CD/metabolismo , Antígenos CD/genética , Modelos Animais de Doenças , Neurônios/metabolismo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatias/metabolismo , Tauopatias/genética , Tauopatias/patologia
15.
Protein Sci ; 32(12): e4833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37937856

RESUMO

Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 ß-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Agregados Proteicos , Anticorpos Antivirais , Proteínas do Envelope Viral/química , Peptídeos/metabolismo , Proteínas Amiloidogênicas/metabolismo
16.
Nat Commun ; 14(1): 945, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806058

RESUMO

The phenomenon of protein aggregation is associated with a wide range of human diseases. Our knowledge of the aggregation behaviour of viral proteins, however, is still rather limited. Here, we investigated this behaviour in the SARS-CoV and SARS-CoV-2 proteomes. An initial analysis using a panel of sequence-based predictors suggested the presence of multiple aggregation-prone regions (APRs) in these proteomes and revealed a strong aggregation propensity in some SARS-CoV-2 proteins. We then studied the in vitro aggregation of predicted aggregation-prone SARS-CoV and SARS-CoV-2 proteins and protein regions, including the signal sequence peptide and fusion peptides 1 and 2 of the spike protein, a peptide from the NSP6 protein, and the ORF10 and NSP11 proteins. Our results show that these peptides and proteins can form amyloid aggregates. We used circular dichroism spectroscopy to reveal the presence of ß-sheet rich cores in aggregates and X-ray diffraction and Raman spectroscopy to confirm the formation of amyloid structures. Furthermore, we demonstrated that SARS-CoV-2 NSP11 aggregates are toxic to mammalian cell cultures. These results motivate further studies about the possible role of aggregation of SARS proteins in protein misfolding diseases and other human conditions.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Animais , Proteínas Amiloidogênicas , Proteoma , SARS-CoV-2 , Mamíferos
17.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293032

RESUMO

The spread of prion-like protein aggregates is believed to be a common driver of pathogenesis in many neurodegenerative diseases. Accumulated tangles of filamentous Tau protein are considered pathogenic lesions of Alzheimer's disease (AD) and related Tauopathies, including progressive supranuclear palsy, and corticobasal degeneration. Tau pathologies in these illnesses exhibits a clear progressive and hierarchical spreading pattern that correlates with disease severity1,2. Clinical observation combined with complementary experimental studies3,4 have shown that Tau preformed fibrils (PFF) are prion-like seeds that propagate pathology by entering cells and templating misfolding and aggregation of endogenous Tau. While several receptors of Tau are known, they are not specific to the fibrillar form of Tau. Moreover, the underlying cellular mechanisms of Tau PFF spreading remains poorly understood. Here, we show that the lymphocyte-activation gene 3 (Lag3) is a cell surface receptor that binds to PFF, but not monomer, of Tau. Deletion of Lag3 or inhibition of Lag3 in primary cortical neurons significantly reduces the internalization of Tau PFF and subsequent Tau propagation and neuron-to-neuron transmission. Propagation of Tau pathology and behavioral deficits induced by injection of Tau PFF in the hippocampus and overlying cortex are attenuated in mice lacking Lag3 selectively in neurons. Our results identify neuronal Lag3 as a receptor of pathologic Tau in the brain, and for AD and related Tauopathies a therapeutic target.

18.
Curr Res Struct Biol ; 4: 29-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35146445

RESUMO

Transactivation domain of Adenovirus Early region 1A (E1A) oncoprotein is an intrinsically disordered molecular hub protein. It is involved in binding to different domains of human cell transcriptional co-activators such as retinoblastoma (pRb), CREB-binding protein (CBP), and its paralogue p300. The conserved region 1 (TAD) of E1A is known to undergo structural transitions and folds upon interaction with transcriptional adaptor zinc finger 2 (TAZ2). Previous reports on Taz2-E1A studies have suggested the formation of helical conformations of E1A-TAD. However, the folding behavior of the TAD region in isolation has not been studied in detail. Here, we have elucidated the folding behavior of E1A peptide at varied temperatures and solution conditions. Further, we have studied the effects of macromolecular crowding on E1A-TAD peptide. Additionally, we have also predicted the molecular recognition features of E1A using MoRF predictors. The predicted MoRFs are consistent with its structural transitions observed during TAZ2 interactions for transcriptional regulation in literature. Also, as a general rule of MoRFs, E1A undergoes helical transitions in alcohol and osmolyte solution. Finally, we studied the aggregation behavior of E1A, where we observed that the E1A could form amyloid-like aggregates that are cytotoxic to mammalian cells.

19.
ACS Chem Neurosci ; 13(15): 2281-2287, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35856925

RESUMO

A strong association between protein aggregation and human diseases (such as Alzheimer's, Parkinson's, and Huntington's disease) is well demonstrated. Misfolding and aggregation of p53, a central transcriptional mediator, has been revealed by various experimental evidence in different types of cancers. Aggregation studies focusing on different p53 domains, mostly, the central core domain and its mutants under the influence of various environmental conditions, and the p53 transactivation domain (TAD) (1-63) have been reported. However, the specific subdomains responsible for p53 aggregation are not known. p53 TADs interact with diverse cellular factors to modulate the function of p53 and elicit appropriate cellular responses under different stress conditions. In this study, the aggregation of the p53 TAD2 domain (38-61) has been studied in isolation. The aggregates were generated in vitro under acidic pH conditions after in silico scoring for amyloidogenic tendency and characterized using dye-based assays (ThT and bis-ANS fluorescence), CD spectroscopy, and microscopy (scanning electron microscoy, transmission electron microscopy, and atomic force microscopy). It was observed that p53 TAD2 forms characteristic ß-sheet-rich amyloid-like fibrils. Via a reductionist approach, this study highlights the nature of p53 TAD2 domain (38-61) aggregation.


Assuntos
Amiloidose , Proteína Supressora de Tumor p53 , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Agregados Proteicos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
20.
Sci Adv ; 8(10): eabh1419, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275724

RESUMO

The short half-life in the GI tract necessitates an excess of drugs causing side effects of oral formulations. Here, we report the development and deployment of Bacterioboat, which consists of surface-encapsulated mesoporous nanoparticles on metabolically active Lactobacillus reuteri as a drug carrier suitable for oral administration. Bacterioboat showed up to 16% drug loading of its dry weight, intestinal anchorage around alveoli regions, sustained release, and stability in physiological conditions up to 24 hours. In vivo studies showed that oral delivery of 5-fluorouracil leads to increased potency, resulting in improved shrinkage of solid tumors, enhanced life expectancy, and reduced side effects. This novel design and development make this system ideal for orally administrable drugs with low solubility or permeability or both and even making them effective at a lower dose.


Assuntos
Portadores de Fármacos , Nanopartículas , Administração Oral , Sistemas de Liberação de Medicamentos , Meia-Vida , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa