Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175432

RESUMO

Intrauterine smoke (IUS) exposure during early childhood has been associated with a number of negative health consequences, including reduced lung function and asthma susceptibility. The biological mechanisms underlying these associations have not been established. MicroRNAs regulate the expression of numerous genes involved in lung development. Thus, investigation of the impact of IUS on miRNA expression during human lung development may elucidate the impact of IUS on post-natal respiratory outcomes. We sought to investigate the effect of IUS exposure on miRNA expression during early lung development. We hypothesized that miRNA-mRNA networks are dysregulated by IUS during human lung development and that these miRNAs may be associated with future risk of asthma and allergy. Human fetal lung samples from a prenatal tissue retrieval program were tested for differential miRNA expression with IUS exposure (measured using placental cotinine concentration). RNA was extracted and miRNA-sequencing was performed. We performed differential expression using IUS exposure, with covariate adjustment. We also considered the above model with an additional sex-by-IUS interaction term, allowing IUS effects to differ by male and female samples. Using paired gene expression profiles, we created sex-stratified miRNA-mRNA correlation networks predictive of IUS using DIABLO. We additionally evaluated whether miRNAs were associated with asthma and allergy outcomes in a cohort of childhood asthma. We profiled pseudoglandular lung miRNA in n = 298 samples, 139 (47%) of which had evidence of IUS exposure. Of 515 miRNAs, 25 were significantly associated with intrauterine smoke exposure (q-value < 0.10). The IUS associated miRNAs were correlated with well-known asthma genes (e.g., ORM1-Like Protein 3, ORDML3) and enriched in disease-relevant pathways (oxidative stress). Eleven IUS-miRNAs were also correlated with clinical measures (e.g., Immunoglobulin E andlungfunction) in children with asthma, further supporting their likely disease relevance. Lastly, we found substantial differences in IUS effects by sex, finding 95 significant IUS-miRNAs in male samples, but only four miRNAs in female samples. The miRNA-mRNA correlation networks were predictive of IUS (AUC = 0.78 in males and 0.86 in females) and suggested that IUS-miRNAs are involved in regulation of disease-relevant genes (e.g., A disintegrin and metalloproteinase domain 19 (ADAM19), LBH regulator of WNT signaling (LBH)) and sex hormone signaling (Coactivator associated methyltransferase 1(CARM1)). Our study demonstrated differential expression of miRNAs by IUS during early prenatal human lung development, which may be modified by sex. Based on their gene targets and correlation to clinical asthma and atopy outcomes, these IUS-miRNAs may be relevant for subsequent allergy and asthma risk. Our study provides insight into the impact of IUS in human fetal lung transcriptional networks and on the developmental origins of asthma and allergic disorders.


Assuntos
Asma , MicroRNAs , Criança , Humanos , Masculino , Feminino , Pré-Escolar , Gravidez , Fumaça , Placenta/metabolismo , Asma/genética , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética
2.
Drug Metab Dispos ; 48(6): 515-520, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303576

RESUMO

The cytosolic sulfotransferases (SULTs) metabolize a variety of xenobiotic and endogenous substrates. Several SULTs are expressed in the fetus, implying that these enzymes have important functions during human development. We recently reported that while SULT1C4 mRNA is abundant in prenatal human liver specimens, SULT1C4 protein is barely detectable. Two coding transcript variants (TVs) of SULT1C4 are indexed in GenBank, TV1 (full-length) and TV2 (lacking exons 3 and 4). The purpose of this study was to evaluate expression of the individual TVs as a clue for understanding the discordance between mRNA and protein levels. Reverse-transcription polymerase chain reaction was initially performed to identify TVs expressed in intestinal and hepatic cell lines. This analysis generated fragments corresponding to TV1, TV2, and a third variant that lacked exon 3 (E3DEL). Using reverse-transcription quantitative polymerase chain reaction assays designed to quantify TV1, TV2, or E3DEL individually, all three TVs were more highly expressed in prenatal than postnatal specimens. TV2 levels were ∼fivefold greater than TV1, while E3DEL levels were minimal. RNA sequencing (RNA-seq) analysis of another set of liver specimens confirmed that TV1 and TV2 levels were highest in prenatal liver, with TV2 higher than TV1. RNA-seq also detected a noncoding RNA, which was also more abundant in prenatal liver. Transfection of HEK293T cells with plasmids expressing individual Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys-tagged SULT1C4 isoforms demonstrated that TV1 produced much more protein than did TV2. These data suggest that the lack of correspondence between SULT1C4 mRNA and protein levels in human liver is likely attributable to the inability of the more abundant TV2 to produce stable protein. SIGNIFICANCE STATEMENT: Cytosolic sulfotransferases (SULTs) metabolize a variety of xenobiotic and endogenous substrates, and several SULTs are highly expressed in the fetus, implying that they have important functions during human development. SULT1C4 is highly expressed in prenatal liver at the mRNA level but not the protein level. This study provides an explanation for this discordance by demonstrating that the predominant SULT1C4 transcript is a variant that produces relatively little protein.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fígado/enzimologia , RNA Mensageiro/metabolismo , Sulfotransferases/genética , Éxons/genética , Células HEK293 , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sulfotransferases/metabolismo
3.
Drug Metab Dispos ; 47(6): 592-600, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30885913

RESUMO

The liver is the predominant organ of metabolism for many endogenous and foreign chemicals. Cytosolic sulfotransferases (SULTs) catalyze the sulfonation of drugs and other xenobiotics, as well as hormones, neurotransmitters, and sterols, with consequences that include enhanced drug elimination, hormone inactivation, and procarcinogen bioactivation. SULTs are classified into six gene families, but only SULT1 and SULT2 enzymes are expressed in human liver. We characterized the developmental expression patterns of SULT1 and SULT2 mRNAs and proteins in human liver samples using reverse transcription quantitative polymerase chain reaction (RT-qPCR), RNA sequencing, and targeted quantitative proteomics. Using a set of prenatal, infant, and adult liver specimens, RT-qPCR analysis demonstrated that SULT1A1 (transcript variant 1) expression did not vary appreciably during development; SULT1C2, 1C4, and 1E1 mRNA levels were highest in prenatal and/or infant liver, and 1A2, 1B1, and 2A1 mRNA levels were highest in infant and/or adult. Hepatic SULT1A1 (transcript variant 5), 1C3, and 2B1 mRNA levels were low regardless of developmental stage. Results obtained with RNA sequencing of a different set of liver specimens (prenatal and pediatric) were generally comparable results to those of the RT-qPCR analysis, with the additional finding that SULT1A3 expression was highest during gestation. Analysis of SULT protein content in a library of human liver cytosols demonstrated that protein levels generally corresponded to the mRNAs, with the major exception that SULT1C4 protein levels were much lower than expected based on mRNA levels. These findings further support the concept that hepatic SULTs play important metabolic roles throughout the human life course, including early development.


Assuntos
Citosol/metabolismo , Fígado/metabolismo , Sulfotransferases/metabolismo , Adolescente , Adulto , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Adulto Jovem
4.
Br J Clin Pharmacol ; 85(12): 2824-2837, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31475367

RESUMO

AIMS: To characterize the population pharmacokinetics (PK) of sildenafil and its active metabolite, N-desmethyl sildenafil (DMS), in premature infants. METHODS: We performed a multicentre, open-label trial to characterize the PK of sildenafil in infants ≤28 weeks gestation and < 365 postnatal days (cohort 1) or < 32 weeks gestation and 3-42 postnatal days (cohort 2). In cohort 1, we obtained PK samples from infants receiving sildenafil as ordered per the local standard of care (intravenous [IV] or enteral). In cohort 2, we administered a single IV dose of sildenafil and performed PK sampling. We performed a population PK analysis and dose-exposure simulations using the software NONMEM®. RESULTS: We enrolled 34 infants (cohort 1 n = 25; cohort 2 n = 9) and collected 109 plasma PK samples. Sildenafil was given enterally (0.42-2.09 mg/kg) in 24 infants in cohort 1 and via IV (0.125 or 0.25 mg/kg) in all infants in cohort 2. A 2-compartment PK model for sildenafil and 1-compartment model for DMS, with presystemic conversion of sildenafil to DMS, characterized the data well. Coadministration of fluconazole (n = 4), a CYP3A inhibitor, resulted in an estimated 59% decrease in sildenafil clearance. IV doses of 0.125, 0.5 and 1 mg/kg every 8 hours (in the absence of fluconazole) resulted in steady-state maximum sildenafil concentrations that were generally within the range of those reported to inhibit phosphodiesterase type 5 activity in vitro. CONCLUSIONS: We successfully characterized the PK of sildenafil and DMS in premature infants and applied the model to inform dosing for a follow-up, phase II study.


Assuntos
Recém-Nascido Prematuro/sangue , Modelos Biológicos , Inibidores da Fosfodiesterase 5/farmacocinética , Citrato de Sildenafila/farmacocinética , Administração Oral , Estudos de Coortes , Citocromo P-450 CYP3A/sangue , Citocromo P-450 CYP3A/genética , Fluconazol/administração & dosagem , Fluconazol/farmacocinética , Idade Gestacional , Humanos , Hipertensão Pulmonar/sangue , Hipertensão Pulmonar/tratamento farmacológico , Lactente , Recém-Nascido , Doenças do Prematuro/sangue , Doenças do Prematuro/tratamento farmacológico , Injeções Intravenosas , Inibidores da Fosfodiesterase 5/administração & dosagem , Inibidores da Fosfodiesterase 5/sangue , Inibidores da Fosfodiesterase 5/uso terapêutico , Citrato de Sildenafila/administração & dosagem , Citrato de Sildenafila/sangue , Citrato de Sildenafila/uso terapêutico
5.
Pharmacogenet Genomics ; 28(3): 86-94, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29360682

RESUMO

OBJECTIVES: The majority of drug dosing studies are based on adult populations, with modification of the dosing for children based on size and weight. This rudimentary approach for drug dosing children is limited, as biologically a child can differ from an adult in far more aspects than just size and weight. Specifically, understanding the ontogeny of childhood liver development is critical in dosing drugs that are metabolized through the liver, as the rate of metabolism determines the duration and intensity of a drug's pharmacologic action. Therefore, we set out to determine pharmacogenes that change over childhood development, followed by a secondary agnostic analysis, assessing changes transcriptome wide. MATERIALS AND METHODS: A total of 47 human liver tissue samples, with between 10 and 13 samples in four age groups spanning childhood development, underwent pair-end sequencing. Kruskal-Wallis and Spearman's rank correlation tests were used to determine the association of gene expression levels with age. Gene set analysis based on the pathways in KEGG utilized the gamma method. Correction for multiple testing was completed using q-values. RESULTS: We found evidence for increased expression of 'very important pharmacogenes', for example, coagulation factor V (F5) (P=6.7×10(-7)), angiotensin I converting enzyme (ACE) (P=6.4×10(-3)), and solute carrier family 22 member 1 (SLC22A1) (P=7.0×10(-5)) over childhood development. In contrast, we observed a significant decrease in expression of two alternative CYP3A7 transcripts (P=1.5×10(-5) and 3.0×10(-5)) over development. The analysis of genome-wide changes detected transcripts in the following genes with significant changes in mRNA expression (P<1×10(-9) with false discovery rate<5×0(-5)): ADCY1, PTPRD, CNDP1, DCAF12L1 and HIP1. Gene set analysis determined ontogeny-related transcriptomic changes in the renin-angiotensin pathway (P<0.002), with lower expression of the pathway, in general, observed in liver samples from younger participants. CONCLUSION: Considering that the renin-angiotensin pathway plays a central role in blood pressure and plasma sodium concentration, and our observation that ACE and PTPRD expression increased over the spectrum of childhood development, this finding could potentially impact the dosing of an entire class of drugs known as ACE-inhibitors in pediatric patients.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Transportador 1 de Cátions Orgânicos/genética , Sistema Renina-Angiotensina/genética , Transcriptoma/genética , Adolescente , Criança , Pré-Escolar , Citocromo P-450 CYP3A/genética , Fator V/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lactente , Recém-Nascido , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Peptidil Dipeptidase A/genética
6.
Drug Metab Dispos ; 46(6): 888-896, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602798

RESUMO

The major objective of this study was to investigate the association of genetic and nongenetic factors with variability in protein abundance and in vitro activity of the androgen-metabolizing enzyme UGT2B17 in human liver microsomes (n = 455). UGT2B17 abundance was quantified by liquid chromatography-tandem mass spectrometry proteomics, and enzyme activity was determined by using testosterone and dihydrotestosterone as in vitro probe substrates. Genotyping or gene resequencing and mRNA expression were also evaluated. Multivariate analysis was used to test the association of UGT2B17 copy number variation, single nucleotide polymorphisms (SNPs), age, and sex with its mRNA expression, abundance, and activity. UGT2B17 gene copy number and SNPs (rs7436962, rs9996186, rs28374627, and rs4860305) were associated with gene expression, protein levels, and androgen glucuronidation rates in a gene dose-dependent manner. UGT2B17 protein (mean ± S.D. picomoles per milligram of microsomal protein) is sparsely expressed in children younger than 9 years (0.12 ± 0.24 years) but profoundly increases from age 9 years to adults (∼10-fold) with ∼2.6-fold greater abundance in males than in females (1.2 vs. 0.47). Association of androgen glucuronidation with UGT2B15 abundance was observed only in the low UGT2B17 expressers. These data can be used to predict variability in the metabolism of UGT2B17 substrates. Drug companies should include UGT2B17 in early phenotyping assays during drug discovery to avoid late clinical failures.


Assuntos
Androgênios/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Genótipo , Humanos , Inativação Metabólica/genética , Lactente , Recém-Nascido , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Testosterona/metabolismo , Adulto Jovem
7.
J Pharmacol Exp Ther ; 363(2): 265-274, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28819071

RESUMO

Hepatic flavin-containing mono-oxygenase 3 (FMO3) metabolizes a broad array of nucleophilic heteroatom (e.g., N or S)-containing xenobiotics (e.g., amphetamine, sulindac, benzydamine, ranitidine, tamoxifen, nicotine, and ethionamide), as well as endogenous compounds (e.g., catecholamine and trimethylamine). To predict the effect of genetic and nongenetic factors on the hepatic metabolism of FMO3 substrates, we quantified FMO3 protein abundance in human liver microsomes (HLMs; n = 445) by liquid chromatography-tandem mass chromatography proteomics. Genotyping/gene resequencing, mRNA expression, and functional activity (with benzydamine as probe substrate) of FMO3 were also evaluated. FMO3 abundance increased 2.2-fold (13.0 ± 11.4 pmol/mg protein vs. 28.0 ± 11.8 pmol/mg protein) from neonates to adults. After 6 years of age, no significant difference in FMO3 abundance was found between children and adults. Female donors exhibited modestly higher mRNA fragments per kilobase per million reads values (139.9 ± 76.9 vs. 105.1 ± 73.1; P < 0.001) and protein FMO3 abundance (26.7 ± 12.0 pmol/mg protein vs. 24.1 ± 12.1 pmol/mg protein; P < 0.05) compared with males. Six single nucleotide polymorphisms (SNPs), including rs2064074, rs28363536, rs2266782 (E158K), rs909530 (N285N), rs2266780 (E308G), and rs909531, were associated with significantly decreased protein abundance. FMO3 abundance in individuals homozygous and heterozygous for haplotype 3 (H3), representing variant alleles for all these SNPs (except rs2066534), were 50.8% (P < 0.001) and 79.5% (P < 0.01), respectively, of those with the reference homozygous haplotype (H1, representing wild-type). In summary, FMO3 protein abundance is significantly associated with age, gender, and genotype. These data are important in predicting FMO3-mediated heteroatom-oxidation of xenobiotics and endogenous biomolecules in the human liver.


Assuntos
Fígado/enzimologia , Oxigenases/genética , Oxigenases/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Adulto Jovem
8.
Am J Respir Cell Mol Biol ; 54(6): 814-21, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26584061

RESUMO

The fetal origins of disease hypothesis suggests that variations in the course of prenatal lung development may affect life-long pulmonary function growth, decline, and pathobiology. Many studies support the existence of differences in the developing lung trajectory in males and females, and sex-specific differences in the prevalence of chronic lung diseases, such as asthma and bronchopulmonary dysplasia. The objectives of this study were to investigate the early developing fetal lung for transcriptomic correlates of postconception age (maturity) and sex, and their associations with chronic lung diseases. We analyzed whole-lung transcriptome profiles of 61 females and 78 males at 54-127 days postconception (dpc) from nonsmoking mothers using unsupervised principal component analysis and supervised linear regression models. We identified dominant transcriptomic correlates for postconception age and sex with corresponding gene sets that were enriched for developing lung structural and functional ontologies. We observed that the transcriptomic sex difference was not a uniform global time shift/lag, rather, lungs of males appear to be more mature than those of females before 96 dpc, and females appear to be more mature than males after 96 dpc. The age correlate gene set was consistently enriched for asthma and bronchopulmonary dysplasia genes, but the sex correlate gene sets were not. Despite sex differences in the developing fetal lung transcriptome, postconception age appears to be more dominant than sex in the effect of early fetal lung developments on disease risk during this early pseudoglandular phase of development.


Assuntos
Feto/metabolismo , Pneumopatias/genética , Pulmão/embriologia , Pulmão/patologia , Caracteres Sexuais , Transcriptoma/genética , Fatores Etários , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Análise de Componente Principal , Estatística como Assunto
9.
Drug Metab Dispos ; 44(7): 948-58, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26608082

RESUMO

Although CYP2B6 catalyzes the biotransformation of many drugs used clinically for children and adults, information regarding the effects of development on CYP2B6 expression and activity are scarce. Utilizing a large panel of human liver samples (201 donors: 24 fetal, 141 pediatric, and 36 adult), we quantified CYP2B6 mRNA and protein expression levels, characterized CYP2B6 (bupropion hydroxylase) activity in human liver microsomes (HLMs), and performed an extensive genotype analysis to differentiate CYP2B6 haplotypes such that the impact of genetic variation on these parameters could be assessed. Fetal livers contained extremely low levels of CYP2B6 mRNA relative to postnatal samples and fetal HLMs did not appear to catalyze bupropion hydroxylation; however, fetal CYP2B6 protein levels were not significantly different from postnatal levels. Considerable interindividual variation in CYP2B6 mRNA expression, protein levels, and activity was observed in postnatal HLMs (mRNA, ∼40,000-fold; protein, ∼300-fold; activity, ∼600-fold). The extremely wide range of interindividual variability in CYP2B6 expression and activity was significantly associated with age (P < 0.01) following log transformation of the data. Our data suggest that CYP2B6 activity appears as early as the first day of life, increases through infancy, and by 1 year of age, CYP2B6 levels and activity may approach those of adults. Surprisingly, CYP2B6 interindividual variability was not significantly associated with genetic variation in CYP2B6, nor was it associated with differences in gender or ethnicity, suggesting that factors other than these are largely responsible for the wide range of variability in CYP2B6 expression and activity observed among a large group of individuals/samples.


Assuntos
Envelhecimento/metabolismo , Bupropiona/metabolismo , Citocromo P-450 CYP2B6/metabolismo , Fígado/enzimologia , RNA Mensageiro/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Envelhecimento/genética , Biotransformação , Bupropiona/análogos & derivados , Criança , Pré-Escolar , Citocromo P-450 CYP2B6/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Frequência do Gene , Idade Gestacional , Haplótipos , Humanos , Hidroxilação , Lactente , Recém-Nascido , Masculino , Microssomos Hepáticos/enzimologia , Pessoa de Meia-Idade , Farmacogenética , Variantes Farmacogenômicos , RNA Mensageiro/genética , Especificidade por Substrato , Adulto Jovem
10.
Am J Respir Cell Mol Biol ; 52(5): 543-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25192440

RESUMO

Antenatal corticosteroids enhance lung maturation. However, the importance of glucocorticoid genes on early lung development, asthma susceptibility, and treatment response remains unknown. We investigated whether glucocorticoid genes are important during lung development and their role in asthma susceptibility and treatment response. We identified genes that were differentially expressed by corticosteroids in two of three genomic datasets: lymphoblastoid cell lines of participants in the Childhood Asthma Management Program, a glucocorticoid chromatin immunoprecipitation/RNA sequencing experiment, or a murine model; these genes made up the glucocorticoid gene set (GCGS). Using gene expression profiles from 38 human fetal lungs and C57BL/6J murine fetal lungs, we identified developmental genes that were in the top 5% of genes contributing to the top three principal components (PCs) most highly associated with post-conceptional age. Glucocorticoid genes that were enriched in this set of developmental genes were then included in the developmental glucocorticoid gene set (DGGS). We then investigated whether glucocorticoid genes are important during lung development, and their role in asthma susceptibility and treatment response. A total of 232 genes were included in the GCGS. Analysis of gene expression demonstrated that glucocorticoid genes were enriched in lung development (P = 7.02 × 10(-26)). The developmental GCGS was enriched for genes that were differentially expressed between subjects with asthma and control subjects (P = 4.26 × 10(-3)) and were enriched after treatment of subjects with asthma with inhaled corticosteroids (P < 2.72 × 10(-4)). Our results show that glucocorticoid genes are overrepresented among genes implicated in fetal lung development. These genes influence asthma susceptibility and treatment response, suggesting their involvement in the early ontogeny of asthma.


Assuntos
Corticosteroides/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Dexametasona/uso terapêutico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Asma/embriologia , Proteína delta de Ligação ao Facilitador CCAAT/genética , Estudos de Casos e Controles , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Marcadores Genéticos , Predisposição Genética para Doença , Humanos , Pulmão/embriologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Análise de Componente Principal , Proteínas de Ligação a Tacrolimo/genética , Fatores de Transcrição/genética , Resultado do Tratamento
11.
Drug Metab Dispos ; 43(8): 1286-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979262

RESUMO

Members of the cytochrome P450 3A (CYP3A) subfamily of drug metabolizing enzymes exhibit developmental changes in expression in human liver characterized by a transition between CYP3A7 and CYP3A4 over the first few years of life. In contrast, the developmental expression of CYP3A5 is less well understood due to polymorphic expression of the enzyme in human tissues as a result of the prevalence of the CYP3A5*3 allele, which leads to alternative splicing. We further explored the expression of CYP3A5 and the impact of alternative splicing on the variability of CYP3A5 functional activity in a large bank of human prenatal liver samples (7 to 32 weeks of age postconception). The expression of normally spliced CYP3A5 mRNA in all human fetal liver samples varied 235-fold whereas CYP3A5 SV1 mRNA was only detected in fetal liver samples with at least one CYP3A5*3 allele. Formation of 1'-OH midazolam (MDZ) varied 79-fold, and the ratio of 1'-OH MDZ to 4-OH MDZ varied 8-fold and depended on the presence or absence of the CYP3A5*3 allele. Formation of 4-OH MDZ was significantly associated with 1'-OH MDZ (r(2) = 0.76, P < 0.0001) but varied (36-fold) independently of CYP3A5 genotype or expression. The substantial interindividual variability that remains even after stratification for CYP3A5 genotype suggests that factors such as environmental exposure and epigenetic alterations act in addition to genetic variation to contribute to the variability of CYP3A5 expression in human prenatal liver.


Assuntos
Citocromo P-450 CYP3A/biossíntese , Citocromo P-450 CYP3A/genética , Feto/enzimologia , Fígado/enzimologia , Adulto , Alelos , Biotransformação , Epigênese Genética , Feminino , Variação Genética , Genótipo , Idade Gestacional , Humanos , Hidroxilação , Microssomos Hepáticos/enzimologia , Midazolam/farmacocinética , Gravidez , Splicing de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
12.
Drug Metab Dispos ; 42(8): 1268-74, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24829289

RESUMO

Many drugs prescribed to children are drug transporter substrates. Drug transporters are membrane-bound proteins that mediate the cellular uptake or efflux of drugs and are important to drug absorption and elimination. Very limited data are available on the effect of age on transporter expression. Our study assessed age-related gene expression of hepatic and intestinal drug transporters. Multidrug resistance protein 2 (MRP2), organic anion transporting polypeptide 1B1 (OATP1B1), and OATP1B3 expression was determined in postmortem liver samples (fetal n = 6, neonatal n = 19, infant n = 7, child n = 2, adult n = 11) and multidrug resistance 1 (MDR1) expression in 61 pediatric liver samples. Intestinal expression of MDR1, MRP2, and OATP2B1 was determined in surgical small bowel samples (neonates n = 15, infants n = 3, adults n = 14). Using real-time reverse-transcription polymerase chain reaction, we measured fetal and pediatric gene expression relative to 18S rRNA (liver) and villin (intestines), and we compared it with adults using the 2(-∆∆Ct) method. Hepatic expression of MRP2, OATP1B1, and OATP1B3 in all pediatric age groups was significantly lower than in adults. Hepatic MDR1 mRNA expression in fetuses, neonates, and infants was significantly lower than in adults. Neonatal intestinal expressions of MDR1 and MRP2 were comparable to those in adults. Intestinal OATP2B1 expression in neonates was significantly higher than in adults. We provide new data that show organ- and transporter-dependent differences in hepatic and intestinal drug transporter expression in an age-dependent fashion. This suggests that substrate drug absorption mediated by these transporters may be subject to age-related variation in a transporter dependent pattern.


Assuntos
Expressão Gênica/genética , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Adolescente , Adulto , Transporte Biológico/genética , Criança , Pré-Escolar , Feminino , Ontologia Genética , Humanos , Lactente , Recém-Nascido , Transportador 1 de Ânion Orgânico Específico do Fígado , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto
13.
Genes (Basel) ; 15(1)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38254988

RESUMO

This clinical study examined the influence of SLCO1B1 c.521T>C (rs4149056) on plasma atorvastatin concentrations in pediatric hypercholesterolemia. The participants (8-21 years), including heterozygous (c.521T/C, n = 13), homozygous (c.521C/C, n = 2) and controls (c.521T/T, n = 13), completed a single-oral-dose pharmacokinetic study. Similar to in adults, the atorvastatin (AVA) area-under-concentration-time curve from 0 to 24 h (AUC0-24) was 1.7-fold and 2.8-fold higher in participants with c.521T/C and c.521C/C compared to the c.521T/T participants, respectively. The inter-individual variability in AVA exposure within these genotype groups ranged from 2.3 to 4.8-fold, indicating that additional factors contribute to the inter-individual variability in the AVA dose-exposure relationship. A multivariate model reinforced the SLCO1B1 c.521T>C variant as the central factor contributing to AVA systemic exposure in this pediatric cohort, accounting for ~65% of the variability in AVA AUC0-24. Furthermore, lower AVA lactone concentrations in participants with increased body mass index contributed to higher exposure within the c.521T/T and c.521T/C genotype groups. Collectively, these factors contributing to higher systemic exposure could increase the risk of toxicity and should be accounted for when individualizing the dosing of atorvastatin in eligible pediatric patients.


Assuntos
Hipercolesterolemia , Adulto , Humanos , Criança , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/genética , Atorvastatina/uso terapêutico , Genótipo , Heterozigoto , Variação Genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética
14.
J Pediatr ; 162(6): 1222-7, 1227.e1-2, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23290512

RESUMO

OBJECTIVE: To determine the relationship between allelic variations in genes involved in fluticasone propionate (FP) metabolism and asthma control among children with asthma managed with inhaled FP. STUDY DESIGN: The relationship between variability in asthma control scores and genetic variation in drug metabolism was assessed by genotyping 9 single nucleotide polymorphisms in the CYP3A4, CYP3A5, and CYP3A7 genes. Genotype information was compared with asthma control scores (0=well controlled to 15=poorly controlled), determined using a questionnaire modified from the National Heart Lung and Blood Institute's Expert Panel 3 guidelines. RESULTS: Our study cohort comprised 734 children with asthma (mean age, 8.8±4.3 years) and was predominantly male (61%) and non-Hispanic white (53%). More than one-half of the children (56%; n=413) were receiving an inhaled glucocorticoid daily, with FP the most frequently prescribed agent (65%). Among the children receiving daily FP, single nucleotide polymorphisms in CYP3A5 and CYP3A7 were not associated with asthma control scores. In contrast, asthma control scores were significantly improved in the 20 children (7%) with the CYP3A4*22 allele (median, 3; range, 0-6) compared with the 201 children without the CYP3A4*22 allele (median, 4; range, 0-15; P=.02). The presence of CYP3A4*22 was associated with improved asthma control scores by 2.1 points (95% CI, 0.5-3.8). CONCLUSION: The presence of CYP3A4*22, which is associated with decreased hepatic CYP3A4 expression and activity, was accompanied by improved asthma control in the FP-treated children. Decreased CYP3A4 activity may improve asthma control with inhaled FP.


Assuntos
Androstadienos/farmacocinética , Asma/tratamento farmacológico , Broncodilatadores/farmacocinética , Citocromo P-450 CYP3A/genética , Administração por Inalação , Adolescente , Androstadienos/administração & dosagem , Broncodilatadores/administração & dosagem , Criança , Pré-Escolar , Feminino , Fluticasona , Humanos , Masculino , Farmacogenética , Polimorfismo Genético , Estudos Prospectivos , Inquéritos e Questionários
15.
Mol Pharmacol ; 81(1): 86-96, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21998292

RESUMO

Cytochrome P450 3A4 (CYP3A4) metabolizes more than 50% of prescribed drugs. The expression of CYP3A4 changes during liver development and may be affected by the administration of some drugs. Alternative mRNA transcripts occur in more than 90% of human genes and are frequently observed in cells responding to developmental and environmental signals. Different mRNA transcripts may encode functionally distinct proteins or contribute to variability of mRNA stability or protein translation efficiency. The purpose of this study was to examine expression of alternative CYP3A4 mRNA transcripts in hepatocytes in response to developmental signals and drugs. cDNA cloning and RNA sequencing (RNA-Seq) were used to identify CYP3A4 mRNA transcripts. Three transcripts were found in HepaRG cells and liver tissues: one represented a canonical mRNA with full-length 3'-untranslated region (UTR), one had a shorter 3'-UTR, and one contained partial intron-6 retention. The alternative mRNA transcripts were validated by either rapid amplification of cDNA 3'-end or endpoint polymerase chain reaction (PCR). Quantification of the transcripts by RNA-Seq and real time quantitative PCR revealed that the CYP3A4 transcript with shorter 3'-UTR was preferentially expressed in developed livers, differentiated hepatocytes, and in rifampicin- and phenobarbital-induced hepatocytes. The CYP3A4 transcript with shorter 3'-UTR was more stable and produced more protein compared with the CYP3A4 transcript with canonical 3'-UTR. We conclude that the 3'-end processing of CYP3A4 contributes to the quantitative regulation of CYP3A4 gene expression through alternative polyadenylation, which may serve as a regulatory mechanism explaining changes of CYP3A4 expression and activity during hepatocyte differentiation and liver development and in response to drug induction.


Assuntos
Citocromo P-450 CYP3A/genética , Hepatócitos/enzimologia , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Preparações Farmacêuticas , Processamento de Terminações 3' de RNA/fisiologia , RNA Mensageiro/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Citocromo P-450 CYP3A/fisiologia , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Poliadenilação/genética , Poliadenilação/fisiologia , Processamento de Terminações 3' de RNA/efeitos dos fármacos
16.
Pharmacogenet Genomics ; 22(4): 236-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22344247

RESUMO

OBJECTIVE: Methotrexate (MTX) has several enzymatic targets in the folate pathway. To better understand the variability in response to MTX, we characterized the interindividual variability of intracellular folate pools in children with juvenile arthritis (JA) and determined clinical and genetic contributors to this variability. STUDY DESIGN: This exploratory single-center cross-sectional study evaluated 93 patients with JA not currently receiving MTX. Whole blood, plasma, and erythrocyte folate concentrations were determined after deconjugation and analyzed through reversed-phase separation and stable isotope dilution tandem mass spectrometry. Folate polyglutamates were measured in red blood cell lysates using an ion-pair reversed phase chromatography tandem mass spectrometry method. RESULTS: Intracellular concentrations of 5-methyl-tetrahydrofolate (5-CH3-THF) and 5,10-methenyl-tetrahydrofolate varied approximately 20-fold and 80-fold, respectively. The polyglutamated forms of 5-CH3-THF as a percentage of total 5-CH3-THF (5-CH3-THFGlun) were also measured. Hierarchical clustering of 5-CH3-THFGlun revealed two groups, each with two distinct clusters. There was an inverse relationship between 5-CH3-THFGlun chain length and plasma 5-CH3-THF concentrations. A subgroup of patients with a historical intolerance to MTX had significantly lower cellular folate concentrations (P<0.0001). In univariate analyses, clinical variables including sex, age, and folate supplementation in addition to variations in MTHFR, MTR, and SLC25A32 were associated with differential intracellular folate redox concentrations. Multivariate analysis further supported the association of single nucleotide polymorphisms in SLC25A32, MTHFR, and MTR with variability in intracellular 5-CH3-THF and 5,10-methenyl-tetrahydrofolate concentrations, respectively. CONCLUSION: Measurement of intracellular folate isoforms may contribute toward a better understanding of individual MTX effects in JA. Clinical variables in addition to genotypic differences beyond MTHFR may additionally explain differential intracellular folate concentrations and variable responses to MTX.


Assuntos
Artrite Juvenil/sangue , Artrite Juvenil/tratamento farmacológico , Antagonistas do Ácido Fólico/efeitos adversos , Metotrexato/efeitos adversos , Ácidos Pteroilpoliglutâmicos/sangue , Tetra-Hidrofolatos/sangue , Adolescente , Artrite Juvenil/genética , Criança , Feminino , Ferredoxina-NADP Redutase/genética , Antagonistas do Ácido Fólico/farmacocinética , Antagonistas do Ácido Fólico/uso terapêutico , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Metotrexato/farmacocinética , Metotrexato/uso terapêutico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Oxirredução , Polimorfismo de Nucleotídeo Único
17.
Arthritis Rheum ; 63(1): 276-85, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20954192

RESUMO

OBJECTIVE: The response to and toxicity of methotrexate (MTX) are unpredictable in patients with juvenile idiopathic arthritis (JIA). Intracellular polyglutamation of MTX, assessed by measuring concentrations of MTX polyglutamates (MTXGlu), has been demonstrated to be a promising predictor of drug response. Therefore, this study was aimed at investigating the genetic predictors of MTXGlu variability and associations between MTXGlu and drug response in JIA. METHODS: The study was designed as a single-center cross-sectional analysis of patients with JIA who were receiving stable doses of MTX at a tertiary care children's hospital. After informed consent was obtained from the 104 patients with JIA, blood was withdrawn during routine MTX-screening laboratory testing. Clinical data were collected by chart review. Genotyping for 34 single-nucleotide polymorphisms (SNPs) in 18 genes within the MTX metabolic pathway was performed. An ion-pair chromatographic procedure with mass spectrometric detection was used to measure MTXGlu1-7. RESULTS: Analysis and genotyping of MTXGlu was completed in the 104 patients. K-means clustering resulted in 3 distinct patterns of MTX polyglutamation. Cluster 1 had low red blood cell (RBC) MTXGlu concentrations, cluster 2 had moderately high RBC MTXGlu1+2 concentrations, and cluster 3 had high concentrations of MTXGlu, specifically MTXGlu3-5. SNPs in the purine and pyrimidine synthesis pathways, as well as the adenosine pathway, were significantly associated with cluster subtype. The cluster with high concentrations of MTXGlu3-5 was associated with elevated liver enzyme levels on liver function tests (LFTs), and there were higher concentrations of MTXGlu3-5 in children who reported gastrointestinal side effects and had abnormal findings on LFTs. No association was noted between MTXGlu and active arthritis. CONCLUSION: MTXGlu remains a potentially useful tool for determining outcomes in patients with JIA being treated with MTX. The genetic predictors of MTXGlu variability may also contribute to a better understanding of the intracellular biotransformation of MTX in these patients.


Assuntos
Artrite Juvenil/tratamento farmacológico , Artrite Juvenil/genética , Metotrexato/análogos & derivados , Metotrexato/uso terapêutico , Ácido Poliglutâmico/análogos & derivados , Adolescente , Antirreumáticos/uso terapêutico , Criança , Pré-Escolar , Análise por Conglomerados , Estudos Transversais , Feminino , Genótipo , Humanos , Masculino , Espectrometria de Massas , Ácido Poliglutâmico/genética , Polimorfismo de Nucleotídeo Único , Resultado do Tratamento
18.
Clin Pharmacol Ther ; 111(3): 646-654, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34716917

RESUMO

rs5758550 has been associated with enhanced transcription and suggested to be a useful marker of CYP2D6 activity. As there are limited and inconsistent data regarding the utility of this distant "enhancer" single nucleotide polymorphism (SNP), our goal was to further assess the impact of rs5758550 on CYP2D6 activity toward two probe substrates, atomoxetine (ATX) and dextromethorphan (DM), using in vivo urinary metabolite (DM; n = 188) and pharmacokinetic (ATX; n = 70) and in vitro metabolite formation (ATX and DM; n = 166) data. All subjects and tissues were extensively genotyped, the "enhancer" SNP phased with established CYP2D6 haplotypes either computationally or experimentally, and the impact on CYP2D6 activity investigated using several linear models of varying complexity to determine the proportion of variability in CYP2D6 activity captured by each model. For all datasets and models, the "enhancer" SNP had no or only a modest impact on CYP2D6 activity prediction. An increased effect, when present, was more pronounced for ATX than DM suggesting potential substate-dependency. In addition, CYP2D6*2 alleles with the "enhancer" SNP were associated with modestly higher metabolite formation rates in vitro, but not in vivo; no effect was detected for CYP2D6*1 alleles with "enhancer" SNP. In summary, it remains inconclusive whether the small effects detected in this investigation are indeed caused by the "enhancer" SNP or are rather due to its incomplete linkage with other variants within the gene. Taken together, there does not appear to be sufficient evidence to warrant the "enhancer" SNP be included in clinical CYP2D6 pharmacogenetic testing.


Assuntos
Citocromo P-450 CYP2D6/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Alelos , Cloridrato de Atomoxetina/uso terapêutico , Criança , Dextrometorfano/uso terapêutico , Genótipo , Haplótipos/genética , Humanos , Testes Farmacogenômicos/métodos , Fenótipo
19.
Respir Res ; 12: 86, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21699702

RESUMO

BACKGROUND: Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. OBJECTIVE: To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. METHODS: Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. RESULTS: In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. CONCLUSIONS: Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.


Assuntos
Asma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Pulmão/metabolismo , Animais , Animais Recém-Nascidos , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Idade Gestacional , Humanos , Modelos Lineares , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Razão de Chances , Análise de Sequência com Séries de Oligonucleotídeos , Medição de Risco , Fatores de Risco
20.
Arthritis Rheum ; 62(6): 1803-12, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20191581

RESUMO

OBJECTIVE: Intracellular methotrexate (MTX) polyglutamates (MTXGlu) have been shown to be potentially useful biomarkers of clinical response in adult patients with rheumatoid arthritis. The present study was undertaken to measure intracellular MTXGlu concentrations in a cohort of patients with juvenile idiopathic arthritis (JIA) to determine the predictors of MTXGlu variability in these patients. METHODS: Blood samples were obtained from patients with JIA who were being treated with a stable dose of MTX for >or=3 months. Clinical data were collected by chart review. Concentrations of MTXGlu(1-7) in red blood cell lysates were quantitated using an innovative ion-pairing chromatography procedure, with detection by mass spectrometry. RESULTS: Patients with JIA from a single center (n = 99; mean +/- SD age 117.8 +/- 56.5 months, 69 female) were included in the analysis. The mean +/- SD dose of MTX was 0.51 +/- 0.25 mg/kg per week, with a median treatment duration of 18 months (interquartile range 3-156 months). MTX was administered subcutaneously in 66 patients (67%). Fifty-six patients (57%) had active arthritis at the time of the clinic visit. Total intracellular MTXGlu (MTXGlu(TOT)) concentrations varied 40-fold, with a mean +/- SD total concentration of 85.8 +/- 48.4 nmoles/liter. Concentrations of each MTXGlu subtype (MTXGlu(1-7)) were measured individually and as a percentage of MTXGlu(TOT) in each patient. MTXGlu(3) was the most prominent subtype identified, comprising 42% of MTXGlu(TOT), and the interindividual variability in the concentration of MTXGlu(3) was the most highly correlated with that of MTXGlu(TOT) (r = 0.96). The route of MTX administration was significantly associated with MTXGlu(1-5) subtypes; higher concentrations of MTXGlu(1 + 2) were observed in patients receiving oral doses of MTX, whereas higher concentrations of MTXGlu(3-5) were observed in patients receiving subcutaneous doses of MTX (P < 0.0001). CONCLUSION: In this cohort of patients with JIA, the MTXGlu(TOT) concentration varied 40-fold. Individual MTXGlu metabolites (MTXGlu(1-7)), which have, until now, not been previously reported in patients with JIA, were detected. The route of MTX administration contributed to the variability in concentrations of MTXGlu(1-5).


Assuntos
Artrite Juvenil/sangue , Metotrexato/análogos & derivados , Metotrexato/farmacocinética , Ácido Poliglutâmico/análogos & derivados , Adolescente , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapêutico , Artrite Juvenil/tratamento farmacológico , Biomarcadores/metabolismo , Criança , Pré-Escolar , Cromatografia de Fase Reversa , Análise por Conglomerados , Vias de Administração de Medicamentos , Humanos , Lactente , Metotrexato/sangue , Metotrexato/uso terapêutico , Seleção de Pacientes , Ácido Poliglutâmico/sangue , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa