Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 16(40): 9273-9291, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32930313

RESUMO

Some food and ferment manufacturing steps such as spray-drying result in the application of viscous stresses to bacteria. This study explores how a viscous flow impacts both bacterial adhesion functionality and bacterial cell organization using a combined experimental and modeling approach. As a model organism we study Lactobacillus rhamnosus GG (LGG) "wild type" (WT), known to feature strong adhesive affinities towards beta-lactoglobulin thanks to pili produced by the bacteria on cell surfaces, along with three cell-surface mutant strains. Applying repeated flows with high shear-rates reduces bacterial adhesive abilities up to 20% for LGG WT. Bacterial chains are also broken by this process, into 2-cell chains at low industrial shear rates, and into single cells at very high shear rates. To rationalize the experimental observations we study numerically and analytically the Stokes equations describing viscous fluid flow around a chain of elastically connected spheroidal cell bodies. In this model setting we examine qualitatively the relationship between surface traction (force per unit area), a proxy for pili removal rate, and bacterial chain length (number of cells). Longer chains result in higher maximal surface tractions, particularly at the chain extremities, while inner cells enjoy a small protection from surface tractions due to hydrodynamic interactions with their neighbors. Chain rupture therefore may act as a mechanism to preserve surface adhesive functionality in bacteria.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Aderência Bacteriana , Fímbrias Bacterianas
2.
Crit Rev Food Sci Nutr ; 59(4): 639-651, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28976212

RESUMO

The membrane (Milk Fat Globule Membrane - MFGM) surrounding the milk fat globule is becoming increasingly studied for its use in food applications due to proven nutritional and technological properties. This review focuses first on current researches which have been led on the MFGM structure and composition and also on laboratory and industrial purification and isolation methods developed in the last few years. The nutritional, health benefits and techno-functional properties of the MFGM are then discussed. Finally, new techno-functional opportunities of MFGM glycoproteins as a possible ingredient for Lactic Acid Bacteria (LAB) encapsulation are detailed. The ability of MFGM to form liposomes entrapping bioactive compounds has been already demonstrated. One drawback is that liposomes are too small to be used for bacteria encapsulation. For the first time, this review points out the numerous advantages to use MFGM glycoproteins as a protecting, encapsulating matrix for bacteria and especially for LAB.


Assuntos
Glicolipídeos/química , Glicoproteínas/química , Lactobacillales , Glicoproteínas de Membrana/análise , Probióticos/administração & dosagem , Animais , Cápsulas/química , Bovinos , Emulsões/química , Glicolipídeos/isolamento & purificação , Glicoproteínas/isolamento & purificação , Promoção da Saúde , Gotículas Lipídicas , Lipossomos/química , Lipídeos de Membrana/análise , Proteínas do Leite , Estrutura Molecular , Valor Nutritivo , Fosfolipídeos/química
3.
Foods ; 13(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063317

RESUMO

Color is one of the first criteria to assess the quality of cheese. However, very limited data are available on the color heterogeneity of the rind and its relationship with microbial community structure. In this study, the color of a wide range of smear-ripened Munster cheeses from various origins was monitored during storage by photographic imaging and data analysis in the CIELAB color space using luminance, chroma, and hue angle as descriptors. Different levels of inter- and intra-cheese heterogeneity were observed. The most heterogeneous Munster cheeses were the darkest with orange-red colors. The most homogeneous were the brightest with yellow-orange. K-means clustering revealed three clusters distinguished by their color heterogeneity. Color analysis coupled with metabarcoding showed that rinds with heterogeneous color exhibited higher microbial diversity associated with important changes in their microbial community structure during storage. In addition, intra-cheese community structure fluctuations were associated with heterogeneity in rind color. The species Glutamicibacter arilaitensis and Psychrobacter nivimaris/piscatorii were found to be positively associated with the presence of undesirable brown patches. This study highlights the close relationship between the heterogeneity of the cheese rind and its microbiota.

4.
Food Microbiol ; 36(2): 223-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010601

RESUMO

Carnobacterium maltaromaticum is a lactic acid bacterium isolated from soft cheese. The objective of this work was to study its potential positive impact when used in cheese technology. Phenotypic and genotypic characterization of six strains of C. maltaromaticum showed that they belong to different phylogenetic groups. Although these strains lacked the ability to coagulate milk quickly, they were acidotolerant. They did not affect the coagulation capacity of starter lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus, used in dairy industry. The impact of C. maltaromaticum LMA 28 on bacterial flora of cheese revealed a significant decrease of Psychrobacter sp. concentration, which might be responsible for cheese aging phenomena. An experimental plan was carried out to unravel the mechanism of inhibition of Psychrobacter sp. and Listeria monocytogenes and possible interaction between various factors (cell concentration, NaCl, pH and incubation time). Cellular concentration of C. maltaromaticum LMA 28 was found to be the main factor involved in the inhibition of Psychrobacter sp. and L. monocytogenes.


Assuntos
Carnobacterium/fisiologia , Queijo/microbiologia , Lactobacillaceae/metabolismo , Leite/microbiologia , Animais , Antibiose , Carnobacterium/classificação , Carnobacterium/genética , Carnobacterium/isolamento & purificação , Fermentação , Microbiologia de Alimentos
5.
J Dairy Res ; 80(4): 400-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24182425

RESUMO

Yogurts are important dairy products that have known a rapid market growth over the past few decades. Industrial yogurt manufacture involves different processing steps. Among them, protein fortification of the milk base is elemental. It greatly enhances yogurt nutritional and functional properties and prevents syneresis, an undesirable yogurt textural defect. Protein enrichment can be achieved by either concentration process (evaporation under vacuum and membrane processing: reverse osmosis and/or ultrafiltration) or by addition of dairy ingredients. Traditionally, skim milk powder (SMP) is used to enrich the milk base before fermentation. However, increased quality and availability of other dairy ingredients such as milk protein isolates (MPI), milk protein concentrates (MPC) whey protein isolates (WPI) and concentrates (WPC), micellar casein (MC) and caseinates have promoted their use as alternatives to SMP. Substituting different dry ingredients for skim milk powder in yogurt making affects the yogurt mix protein composition and subsequent textural and sensorial properties. This review focuses on various type of milk protein used for fortification purposes and their influence on these properties.


Assuntos
Manipulação de Alimentos/métodos , Proteínas do Leite/química , Iogurte/análise , Iogurte/normas , Animais , Bovinos , Fermentação , Alimentos Fortificados , Concentração de Íons de Hidrogênio , Sensação , Proteínas do Soro do Leite
6.
Foods ; 12(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37627982

RESUMO

Hibiscus sabdariffa is a tropical plant with red calyxes whose anthocyanins, phenols, and antioxidant activity make it attractive to consumers both from a nutritional and medicinal standpoint. Its seasonality, perishability, and anthocyanin instability, led to the setup of stabilization methods comprising drying and powdering. However, its properties can often be altered during these stabilization processes. Treatments such as dehumidified-air-drying, infrared drying, and oven-drying, and their combination showed better quality preservation. Moreover, powder production enables superior biomolecule extractability which can be linked to a higher bioaccessibility. However, the required temperatures for powder production increase the bioactive molecules degradation leading to their antioxidant activity loss. To overcome this issue, ambient or cryogenic grinding could be an excellent method to improve the biomolecule bioavailability and accessibility if the processing steps are well mastered. To be sure to benefit from the final nutritional quality of the powder, such as the antioxidant activity of biomolecules, powders have to offer excellent reconstitutability which is linked to powder physicochemical properties and the reconstitution media. Typically, the finest powder granulometry and using an agitated low-temperature reconstitution media allow for improving anthocyanin extractability and stability. In this review, the relevant physicochemical and processing parameters influencing plant powder features from processing transformation to reconstitution will be presented with a focus on bioactive molecules and antioxidant activity preservation.

7.
Foods ; 12(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37628116

RESUMO

Spray drying (SD) is extensively used to encapsulate lactic acid bacteria in large-scale industrial applications; however, bacteria combat several harms that reduce their viability. In this study, a novel technique called electrostatic spray drying (ESD) was used to explore the benefits and disadvantages of using electrostatic charge and lower temperatures in the system. Freeze drying (FD) was used as a reference. The effect of different encapsulation agents, like maltodextrin, arabic gum, and skim milk, on the viability of Lacticaseibacillus rhamnosus GG (LGG) was investigated. The initial cell concentration, particle size distribution, aspect ratio, sphericity, scanning-electron-microscopy images, moisture content, water activity, glass transition, rehydration abilities, and survival during storage were compared. Skim milk was proven to be the best protectant for LGG, regardless of the drying process or storage time. A huge reduction in cell numbers (4.49 ± 0.06 log CFU/g) was observed with maltodextrin using SD; meanwhile, it was protected with minimum loss (8.64 ± 0.62 log CFU/g) with ESD. In general, ESD preserved more LGG cells during processing compared to SD, and provided better stability than FD and SD during storage, regardless of the applied voltage. The ESD product analysis demonstrated an efficient LGG preservation, close to FD; therefore, ESD presented to be a promising and scalable substitute for SD and FD.

8.
J Dairy Res ; 79(3): 280-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22472184

RESUMO

Protein fortification and solubilisation into the milk base are important parameters enhancing yogurt texture. In this study, the milk base prepared from reconstituted skim milk powder was fortified with 2% of 'aged' (1 year old) or 'fresh' micellar casein (MC) powder. Micellar casein powders were left to rehydrate at 20°C for different times (5 or 180, 300, 480, 900 or 1440 min) before acidification with glucono-delta-lactone. The rehydration of the MC powders into milk was monitored with a granulo-morphometer equipment, thus, for the first time, allowing the elucidation of MC rehydration process into an opaque environment such as milk. Whereas the gel point was delayed proportionally to the powder rehydration length, the storage modulus appears unaffected. Besides, the gelation onset was not altered by the powder age.


Assuntos
Alimentos em Conserva , Géis/química , Leite/química , Iogurte/análise , Animais , Caseínas/química , Alimentos Fortificados/análise , Concentração de Íons de Hidrogênio , Micelas , Proteínas do Leite/análise , Tamanho da Partícula , Reologia , Solubilidade , Água
9.
Curr Res Food Sci ; 5: 653-664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434648

RESUMO

Protein inadequacy is the major problem for most plant-based dairy yoghurt substitutes. This study investigated three limited degree of hydrolysis (DH: 1%, 5%, and 9%) of almond protein and the combined effect of DH and hydrolysed almond protein (HP) to non-hydrolysed almond protein (NP) ratios (HP/NP: 40:60, 20:80, 10:90 and 5:95) on the physicochemical properties of resulting fermentation induced almond-based gel (yoghurt). The gel microstructure, particle size, firmness, pH, water holding capacity (WHC), lubrication, flow, and gelation characteristics were measured and associated with the DH, composition, and SDS-PAGE results. The results show significant differences in gel samples with the same HP/NP (40:60) ratio of protein but different protein DH. A higher DH (9%) resulted in samples with lower hardness (6.03 g), viscosity (0.11 Pa s at 50 s-1), cohesiveness (0.63) and higher friction (0.203 at 10 mm/s) compared to sample with 1% DH with higher hardness - 7.34 g, viscosity at 50 s-1 - 0.16 Pa s, cohesiveness - 0.86 and friction at 10 mm/s - 0.194. Comparing samples with the same DH (5%) but different HP/NP ratios showed smaller coarse microgel particles (21.36 µm) and lower hardness (7.17 g), viscosity (0.14 Pa s at 50 s-1) and friction value (0.189 at 10 mm/s) in samples with high HP/NP (40:60) compared to sample with low HP/NP (5:95) that contained significantly large coarse microgel particles (34.61 µm) with the gel being very hard (9.38 g), highly viscous (0.32 Pa s at 50 s-1), and less lubricating (0.220 at 10 mm/s).

10.
Foods ; 11(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36553838

RESUMO

Flaxseed (Linum usitatissimum L.) mucilage is one of the most studied plant seed gums in terms of its techno-functional and health-promoting properties. Nonetheless, the interplay of flaxseed gum (FG) with other food biopolymers, such as milk proteins, under in vitro digestion conditions remains underexplored. The aim of the present work was to investigate the colloidal interplay between flaxseed gum (golden or brown) and milk proteins (sodium caseinate or whey protein isolate) under simulated in vitro digestion conditions and its relationship with the attained in vitro protein digestibility. The presence of flaxseed gum in the milk protein food models and in the oral food boluses obtained was associated with the occurrence of segregative microphase separation. Flaxseed gum exhibited a prominent role in controlling the acid-mediated protein aggregation phenomena, particularly in the sodium caseinate gastric chymes. The addition of FG in the food models was associated with a higher amount of intact total caseins and ß-lactoglobulin at the end of the gastric processing step. Monitoring of the intestinal processing step revealed a very advanced cleavage of the whey proteins (>98%) and caseins (>90%). The degree of the milk protein hydrolysis achieved at the end of the intestinal processing was significantly higher in the systems containing flaxseed gum (i.e., 59−62%) than their gum-free protein counterparts (i.e., 46−47%). It was postulated that the electrostatic milk protein complexation capacity and, to a lesser extent, the thickening effect of flaxseed gum influenced the in vitro digestibility of the milk proteins.

11.
Food Chem X ; 14: 100330, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35615260

RESUMO

This paper reports on the impact of alfalfa galactomannan (AAG, 0.1, 0.5 or 1% wt.) on the colloidal changes and digestibility of sodium caseinate (NaCN) and whey protein isolate (WPI) dispersions (10% wt.) under static in-vitro digestion conditions. Static laser light scattering and confocal laser scanning microscopy-assisted assessment of the NaCN-based gastric chymes confirmed the ability of AAG to control the acid-induced protein coagulation phenomena. Contrarily, the presence of AAG in the WPI-based gastric chymes was associated with the formation of larger aggregates due to the occurrence of segregative microphase separation. The kinetic modelling of the SDS-PAGE densitometric data showed that the intragastric peptic cleavage rates were higher for caseins than whey proteins (ß-lactoglobulin, α-lactalbumin). However, free amino acid (FAA) release rates did not exceed 12% under intragastric conditions, whilst notably higher release rates were achieved in the intestinal digesta (36-52%). In all cases, the FAA release rates significantly increased in the presence of AAG.

12.
Carbohydr Polym ; 289: 119424, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483838

RESUMO

In the present work, the structuring and stabilising potential of flaxseed gum (FG) in whey protein isolate (WPI) cryo-hydrogels was investigated. The FG presence (0.1-1% wt.) in the heat-treated WPI dispersions (10% wt.) induced strong segregative phase separation phenomena, which were associated with a depletion flocculation mechanism. The cryotropic processing of the WPI-FG solutions led to the formation of diverse macroporous protein gel networks depending on the colloidal state of their biopolymeric precursors. Cryogel formation was primarily mediated via covalent (thiol-disulphide bond) bridging, whilst to a lesser extent, non-covalent interactions contributed to the overall stabilisation of the protein gel network. Although FG had a rather minor contribution to the formation of elastically active crosslinks (FG was partitioning mainly into the serum phase located in the macropores), its presence (at concentrations ≥0.75% wt.) improved the homogeneity and interconnectivity of the stranded protein network, whilst it reduced its colloidal instability and macroporosity.


Assuntos
Linho , Linho/química , Temperatura Alta , Hidrogéis , Proteínas do Soro do Leite/química
13.
Curr Res Food Sci ; 4: 577-587, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485926

RESUMO

The influence of the protein, fat and sugar in almond milk on the formation of the acidic gel was investigated by determining their physicochemical and microstructural properties. The protein, fat and sugar in the almond milk were varied from 2% to 6%, 0.8%-7% and 0.6%-7%, respectively and fermented using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophiles cultures to form a gel structure. Both protein and fat increased the gel strength, viscosity (stirred gel) and lightness of almond yoghurts as the concentration increased. The addition of protein content increased the cohesiveness (from 0.70 to 1.17), water holding capacity (from 28.75% to 52.22%) and D4,3 value of particle size (from 32.76 µm to 44.41 µm) of almond yoghurt. Fat reduction decreased the firmness (from 6.56 g to 4.69 g), D4,3 value (from 88.53 µm to 18.37 µm), and water holding capacity (from 48.96% to 27.66%) of almond yoghurt. With sugar addition, almond yoghurt showed increased adhesiveness, decreased lightness and a low pH, with no significant difference in firmness, particle size, and flow behaviour. The confocal images provided evidence that the fortified protein contents homogeneously entrapped fat globules resulting in a more stable gel network and increased fat content led to large fat globule formation resulting in a harder gel network, while the added sugar did not significantly affect the gel network. The results suggested that the protein fortification enhances the texture of almond yoghurt. The fat content of 7% with 3.5% protein showed poor consistency and gel strength of yoghurt. Sugar mainly contributed to bacterial metabolism during fermentation.

14.
Carbohydr Polym ; 267: 118190, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119158

RESUMO

Cryotropic gelation is one of the most common approaches to design novel hydrogels with multifaceted technological and biological functionalities. In the present paper, we studied the ability of highly galactosyl-substituted galactomannans, i.e. fenugreek and alfalfa gum, to form physically crosslinked hydrogels via cryogenic processing. Cycling of the galactomannan solutions (0.25 to 4% wt) from 25 to -20 to 25 °C induced the physical crosslinking of the galactomannan chains leading to the formation of different cryogel structures, i.e. filamentous aggregates (c* < c < 1%), cellular-like gel networks (1 ≤ c < 4%) or a homogeneously swollen gel (c ≥ 4%), depending on the total biopolymer content. Alfalfa gum-based cryogels exhibited higher elasticity and stiffness, better uniformity of the structure and a lower macropore size than their fenugreek counterparts. The physical blending of alfalfa or fenugreek gum with locust bean gum (2% total biopolymer) led to the reinforcement of the mechanical properties of the cryogels without significantly altering their microstructural aspects.


Assuntos
Criogéis/química , Mananas/química , Medicago sativa/química , Sementes/química , Trigonella/química , Módulo de Elasticidade , Fabaceae/química , Galactanos/química , Galactose/análogos & derivados , Gomas Vegetais/química , Porosidade
15.
Food Chem ; 361: 130136, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34051599

RESUMO

Alterations in surface chemical composition relating to rehydration properties of spray-dried camel milk powders during accelerated storage (11-33% RH, 37 °C) over 18 weeks were investigated. The results showed that the surface of the fresh spray-dried camel milk powder (t = 0) was dominated by lipids (78%), followed by proteins (16%) and lactose (6%). During storage, the surface protein and lactose content decreased while the surface lipid content increased, resulting in an increase in surface hydrophobicity and slight agglomeration of the powder, especially for powder kept at 33% RH. Although fresh camel milk powder had very poor wettability, it displayed very high dispersibility and solubility (99%). During storage, dispersibility and solubility declined with increasing storage time and increasing RH levels, which correlated with an increase in surface lipid content. However, at the end of the storage period, camel milk powder still retained very high solubility (>93%).


Assuntos
Camelus , Leite/química , Animais , Interações Hidrofóbicas e Hidrofílicas , Lactose/química , Lactose/metabolismo , Pós/química , Solubilidade , Propriedades de Superfície , Molhabilidade
16.
Data Brief ; 37: 107160, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34113702

RESUMO

Brewers' Spent Grain (BSG) is the primary waste of the beer brewing process, which comprises a plethora of nutritionally appealing ingredients such as proteins, dietary fibres, essential lipids and micronutrients. In our previous study [1], the acid-induced gelation capacity of BSG protein isolate as influenced by the thermal pre-treatment severity was systematically investigated. In the present work, we aimed at providing a dataset outlining the gastrointestinal fate of the acid gels under simulating pre-absorptive digestion conditions adopting the INFOGEST static in-vitro digestion protocol. Protein hydrogel digestibility was assessed by quantification of the total soluble nitrogen content in the initial acid gels as well as the obtained gastric and small intestine chymes. The extent of proteolysis occurring in the oral, gastric and intestinal phases was investigated by SDS-PAGE and the molecular weight distribution of the proteins in the obtained gastric chymes and intestinal digesta was determined by image analysis. The dataset can be deployed to assist food scientists in the design and development of alternative protein-based food and food supplement products adopting the "waste-to-fork" concept.

17.
Int J Biol Macromol ; 192: 1217-1230, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34666134

RESUMO

The present work aimed at investigating an extraction protocol based on consecutive steps of isoelectric point (pH ~ 4.25) mediated gum swelling and deproteinisation as an alternative method to produce flaxseed gum extracts of enhanced techno-functional characteristics. The osidic and proximate composition, structure conformation, flow behaviour, dynamic rheological and thermal properties of gums isolated from brown and golden flaxseeds were assessed. Gum extraction under near-to-isoelectric point conditions did not impair the extraction yield, residual protein and ash content, whilst it resulted in minor changes in the sugar composition of the flaxseed gum extracts. The deconvolution of the GPC/SEC chromatographs revealed the presence of four major polysaccharidic populations corresponding to arabinoxylans, rhamnogalacturonan-I and two AX-RG-I composite fractions. The latter appeared to minimise the intra- and interchain polymer non-covalent interactions (hydrogen bonding) leading to a better solvation affinity in water and lyotropic solvents. Golden flaxseed gums exerted higher molecular weight (Mw = 1.34-1.15 × 106 Da) and intrinsic viscosities (6.63-5.13 dL g-1) as well as better thickening and viscoelastic performance than the brown flaxseed gum exemplars. Golden flaxseed gums exhibited a better thermal stability compared to the brown flaxseed counterparts and therefore, they are suitable for product applications involving severe heat treatments.


Assuntos
Linho/química , Concentração de Íons de Hidrogênio , Conformação Molecular , Compostos Fitoquímicos/química , Gomas Vegetais/química , Gomas Vegetais/isolamento & purificação , Reologia , Solventes/química , Fracionamento Químico , Fenômenos Químicos , Estrutura Molecular , Viscosidade
18.
Foods ; 10(5)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062810

RESUMO

Lactic acid bacteria (LAB) have been studied for several decades to understand and determine their mechanism and interaction within the matrix into which they are introduced. This study aimed to determine the spatial distribution of Lacticaseibacillus rhamnosus GG (LGG) in a dairy matrix and to decipher its behaviour towards milk components, especially fat globules. Two strains of this widely studied bacterium with expected probiotic effects were used: LGG WT with pili on the cell surface and its pili-depleted mutant-LGG ΔspaCBA-in order to determine the involvement of these filamentous proteins. In this work, it was shown that LGG ΔspaCBA was able to limit creaming with a greater impact than the wild-type counterpart. Moreover, confocal imaging evidenced a preferential microbial distribution as aggregates for LGG WT, while the pili-depleted strain tended to be homogenously distributed and found as individual chains. The observed differences in creaming are attributed to the indirect implication of SpaCBA pili. Indeed, the bacteria-to-bacteria interaction surpassed the bacteria-to-matrix interaction, reducing the bacterial surface exposed to raw milk. Conversely, LGG ΔspaCBA may form a physical barrier responsible for preventing milk fat globules from rising to the surface.

19.
J Colloid Interface Sci ; 582(Pt B): 764-772, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916574

RESUMO

Surface protection against biofilms is still an open challenge. Current strategies rely on coatings that are meant to guarantee antiadhesive or antimicrobial effects. While it seems difficult to ensure antiadhesion in complex media and against all the adhesive arsenal of microbes, strategies based on antimicrobials lack from sustainable functionalization methodologies to allow the perfect efficiency of the grafted molecules. Here we used the high affinity ligand-receptor interaction between biotin and streptavidin to functionalize surfaces with lysozyme, an enzyme that degrades the bacterial peptidoglycan cell wall. Biotinylated lysozyme was grafted on surfaces coated with streptavidin receptors. Using atomic force microscopy (AFM)-based single molecule force spectroscopy, we showed that grafting through ligand-receptor interaction allows the correct orientation of the enzyme on the substrate for enhanced activity towards the microbial target. The antibacterial efficiency was tested against Micrococcus luteus and revealed that surface protection was improved when lysozyme was grafted through the ligand-receptor interaction. These results suggest that bio-molecular interactions are promising for a sustainable grafting of antimicrobial agents on surfaces.


Assuntos
Anti-Infecciosos , Muramidase , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Microscopia de Força Atômica , Estreptavidina , Propriedades de Superfície
20.
Carbohydr Polym ; 256: 117394, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33483006

RESUMO

In the present work a galactomannan extract of low protein residue (< 1.3 % wt dry basis) was isolated from alfalfa (Medicago sativa L.) seed endosperm meal. The alfalfa gum (AAG) comprised primarily mannose and galactose at a ratio of 1.18:1, had a molecular weight of 2 × 106 Da and a radius of gyration of 48.7 nm. The average intrinsic viscosity of the dilute AAG dispersions calculated using the modified Mark-Houwink, Huggins and Kraemer equations was 9.33 dLg-1 at 25 °C. The critical overlap concentration was estimated at 0.306 % whereas the concentration dependence of specific viscosity for the dilute and semi-dilute regimes was ∝ C2.3 and C4.2, respectively. The compliance to the Cox-Merz rule was satisfied at 1% of AAG, whereas a departure from superimposition was observed at higher concentrations. Viscoelasticity measurements demonstrated that AAG dispersions exhibit a predominant viscous character at 1 % wt, whereas a weak gel-like behaviour was reached at AAG concentrations ≥3 %.


Assuntos
Mananas/química , Medicago sativa/química , Gomas Vegetais/química , Sementes/química , Elasticidade , Endosperma/química , Galactose/análise , Concentração de Íons de Hidrogênio , Manose/análise , Peso Molecular , Oscilometria , Reologia , Resistência ao Cisalhamento , Açúcares/química , Trigonella/química , Ácidos Urônicos/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa