Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 42(18): 3783-3796, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35332079

RESUMO

To successfully forage in an environment filled with rewards and threats, animals need to rely on familiar structures of their environment that signal food availability. The central amygdala (CeA) is known to mediate a panoply of consummatory and defensive behaviors, yet how specific activity patterns within CeA subpopulations guide optimal choices is not completely understood. In a paradigm of appetitive conditioning in which mice freely forage for food across a continuum of cues, we found that two major subpopulations of CeA neurons, Somatostatin-positive (CeASst) and protein kinase Cδ-positive (CeAPKCδ) neurons, can assign motivational properties to environmental cues. Although the proportion of food responsive cells was higher within CeASst than CeAPKCδ neurons, only the activities of CeAPKCδ, but not CeASst, neurons were required for learning of contextual food cues. Our findings point to a model in which CeAPKCδ neurons may incorporate stimulus salience together with sensory features of the environment to encode memory of the goal location.SIGNIFICANCE STATEMENT The CeA has a very important role in the formation of memories that associate sensory information with aversive or rewarding representation. Here, we used a conditioned place preference paradigm, where freely moving mice learn to associate external cues with food availability, to investigate the roles of CeA neuron subpopulations. We found that CeASst and CeAPKCδ neurons encoded environmental cues during foraging but only the activities of CeAPKCδ neurons were required for learning of contextual food cues.


Assuntos
Núcleo Central da Amígdala , Animais , Núcleo Central da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Camundongos , Neurônios/fisiologia , Recompensa
2.
Front Mol Neurosci ; 14: 790466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955746

RESUMO

The mammalian retina extracts a multitude of diverse features from the visual scene such as color, contrast, and direction of motion. These features are transmitted separately to the brain by more than 40 different retinal ganglion cell (RGC) subtypes. However, so far only a few genetic markers exist to fully characterize the different RGC subtypes. Here, we present a novel genetic Flrt3-CreERT2 knock-in mouse that labels a small subpopulation of RGCs. Using single-cell injection of fluorescent dyes in Flrt3 positive RGCs, we distinguished four morphological RGC subtypes. Anterograde tracings using a fluorescent Cre-dependent Adeno-associated virus (AAV) revealed that a subgroup of Flrt3 positive RGCs specifically project to the medial terminal nucleus (MTN), which is part of the accessory optic system (AOS) and is essential in driving reflex eye movements for retinal image stabilization. Functional characterization using ex vivo patch-clamp recordings showed that the MTN-projecting Flrt3 RGCs preferentially respond to downward motion in an ON-fashion. These neurons distribute in a regular pattern and most of them are bistratified at the level of the ON and OFF bands of cholinergic starburst amacrine cells where they express the known ON-OFF direction-selective RGC marker CART. Together, our results indicate that MTN-projecting Flrt3 RGCs represent a new functionally homogeneous AOS projecting direction-selective RGC subpopulation.

3.
Neuron ; 104(4): 749-764.e6, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31586516

RESUMO

Tactile stimuli are integrated and processed by neuronal circuits in the deep dorsal horn of the spinal cord. Several spinal interneuron populations have been implicated in tactile information processing. However, dorsal horn projection neurons that contribute to the postsynaptic dorsal column (PSDC) pathway transmitting tactile information to the brain are poorly characterized. Here, we show that spinal neurons marked by the expression of Zic2creER mediate light touch sensitivity and textural discrimination. A subset of Zic2creER neurons are PSDC neurons that project to brainstem dorsal column nuclei, and chemogenetic activation of Zic2 PSDC neurons increases sensitivity to light touch stimuli. Zic2 neurons receive direct input from the cortex and brainstem motor nuclei and are required for corrective motor movements. These results suggest that Zic2 neurons integrate sensory input from cutaneous afferents with descending signals from the brain to promote corrective movements and transmit processed touch information back to the brain. VIDEO ABSTRACT.


Assuntos
Movimento/fisiologia , Células do Corno Posterior/fisiologia , Percepção do Tato/fisiologia , Animais , Camundongos , Camundongos Transgênicos , Células do Corno Posterior/citologia
4.
J Cell Biol ; 218(10): 3455-3471, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31409653

RESUMO

Trogocytosis, in which cells nibble away parts of neighboring cells, is an intercellular cannibalism process conserved from protozoa to mammals. Its underlying molecular mechanisms are not well understood and are likely distinct from phagocytosis, a process that clears entire cells. Bi-directional contact repulsion induced by Eph/ephrin signaling involves transfer of membrane patches and full-length Eph/ephrin protein complexes between opposing cells, resembling trogocytosis. Here, we show that the phagocytic adaptor protein Gulp1 regulates EphB/ephrinB trogocytosis to achieve efficient cell rearrangements of cultured cells and during embryonic development. Gulp1 mediates trogocytosis bi-directionally by dynamic engagement with EphB/ephrinB protein clusters in cooperation with the Rac-specific guanine nucleotide exchange factor Tiam2. Ultimately, Gulp1's presence at the Eph/ephrin cluster is a prerequisite for recruiting the endocytic GTPase dynamin. These results suggest that EphB/ephrinB trogocytosis, unlike other trogocytosis events, uses a phagocytosis-like mechanism to achieve efficient membrane scission and engulfment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Efrinas/metabolismo , Receptores da Família Eph/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Animais , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Transdução de Sinais
5.
Contraception ; 77(4): 294-8, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18342654

RESUMO

BACKGROUND: Sexually transmitted infections increase the risk of postoperative complications after termination of pregnancy. Mycoplasma genitalium is sexually transmitted and associated with adverse clinical outcomes in both males and females. The prevalence of M. genitalium is not yet known in New Zealand women or among women presenting for termination of pregnancy. STUDY DESIGN: This study involved prospective data collection at a public hospital clinic for termination of pregnancy. Participants were 300 under 25-year-old women presenting for termination of pregnancy. The study aimed to describe the prevalence of M. genitalium in women presenting for termination of pregnancy using real-time polymerase chain reaction (PCR) testing. Women provided a vaginal swab that was sent to the laboratory for PCR detection of M. genitalium. Data collection included age, ethnicity, previous pregnancy history, gestational age, procedure type, results of STI tests performed on referral for a termination of pregnancy (C. trachomatis, N. gonorrhoeae, T. vaginalis and bacterial vaginosis) and use of antimicrobials in the past 3 weeks. RESULTS: M. genitalium was detected in 26 women (8.7%). Rates of infection did not differ significantly by patient characteristics such as age, ethnicity or previous pregnancies. Infection with M. genitalium was not significantly associated with bacterial vaginosis or C. trachomatis infection. CONCLUSIONS: To our knowledge, this is the first prospective study designed to determine the prevalence of M. genitalium in women presenting for termination of pregnancy. Given the high proportion of cases observed in this study, further research is needed to determine the clinical significance of M. genitalium in postoperative termination of pregnancy complications.


Assuntos
Aborto Induzido , Infecções por Mycoplasma/epidemiologia , Mycoplasma genitalium , Complicações Infecciosas na Gravidez/epidemiologia , Adolescente , Adulto , Feminino , Humanos , Nova Zelândia/epidemiologia , Gravidez , Prevalência , Estudos Prospectivos , Doenças Bacterianas Sexualmente Transmissíveis/epidemiologia
6.
J Cell Biol ; 214(1): 35-44, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27354374

RESUMO

The cellular release of membranous vesicles known as extracellular vesicles (EVs) or exosomes represents a novel mode of intercellular communication. Eph receptor tyrosine kinases and their membrane-tethered ephrin ligands have very important roles in such biologically diverse processes as neuronal development, plasticity, and pathological diseases. Until now, it was thought that ephrin-Eph signaling requires direct cell contact. Although the biological functions of ephrin-Eph signaling are well understood, our mechanistic understanding remains modest. Here we report the release of EVs containing Ephs and ephrins by different cell types, a process requiring endosomal sorting complex required for transport (ESCRT) activity and regulated by neuronal activity. Treatment of cells with purified EphB2(+) EVs induces ephrinB1 reverse signaling and causes neuronal axon repulsion. These results indicate a novel mechanism of ephrin-Eph signaling independent of direct cell contact and proteolytic cleavage and suggest the participation of EphB2(+) EVs in neural development and synapse physiology.


Assuntos
Orientação de Axônios , Comunicação Celular , Efrinas/metabolismo , Exossomos/metabolismo , Receptores da Família Eph/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Cones de Crescimento/metabolismo , Células HEK293 , Células HeLa , Humanos , Potenciais da Membrana , Camundongos , Fosforilação , Fosfotirosina/metabolismo , Proteômica
7.
Nat Neurosci ; 12(10): 1285-92, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19734893

RESUMO

Astrocytes are critical participants in synapse development and function, but their role in synaptic plasticity is unclear. Eph receptors and their ephrin ligands have been suggested to regulate neuron-glia interactions, and EphA4-mediated ephrin reverse signaling is required for synaptic plasticity in the hippocampus. Here we show that long-term potentiation (LTP) at the CA3-CA1 synapse is modulated by EphA4 in the postsynaptic CA1 cell and by ephrin-A3, a ligand of EphA4 that is found in astrocytes. Lack of EphA4 increased the abundance of glial glutamate transporters, and ephrin-A3 modulated transporter currents in astrocytes. Pharmacological inhibition of glial glutamate transporters rescued the LTP defects in EphA4 (Epha4) and ephrin-A3 (Efna3) mutant mice. Transgenic overexpression of ephrin-A3 in astrocytes reduces glutamate transporter levels and produces focal dendritic swellings possibly caused by glutamate excitotoxicity. These results suggest that EphA4/ephrin-A3 signaling is a critical mechanism for astrocytes to regulate synaptic function and plasticity.


Assuntos
Efrina-A3/metabolismo , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Receptor EphA4/metabolismo , Animais , Animais Recém-Nascidos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Biofísica , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Efrina-A3/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp/métodos , Pentilenotetrazol , Receptor EphA4/deficiência , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/fisiopatologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa