Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
Annu Rev Immunol ; 33: 445-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622193

RESUMO

The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.


Assuntos
Imunidade Inata , Neoplasias/imunologia , Neoplasias/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Sistema Imunitário/citologia , Imunoterapia , Ligantes , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Microbiota , Neoplasias/microbiologia , Neoplasias/terapia , Transdução de Sinais
2.
Cell ; 171(4): 934-949.e16, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29033130

RESUMO

The mechanisms by which immune checkpoint blockade modulates tumor evolution during therapy are unclear. We assessed genomic changes in tumors from 68 patients with advanced melanoma, who progressed on ipilimumab or were ipilimumab-naive, before and after nivolumab initiation (CA209-038 study). Tumors were analyzed by whole-exome, transcriptome, and/or T cell receptor (TCR) sequencing. In responding patients, mutation and neoantigen load were reduced from baseline, and analysis of intratumoral heterogeneity during therapy demonstrated differential clonal evolution within tumors and putative selection against neoantigenic mutations on-therapy. Transcriptome analyses before and during nivolumab therapy revealed increases in distinct immune cell subsets, activation of specific transcriptional networks, and upregulation of immune checkpoint genes that were more pronounced in patients with response. Temporal changes in intratumoral TCR repertoire revealed expansion of T cell clones in the setting of neoantigen loss. Comprehensive genomic profiling data in this study provide insight into nivolumab's mechanism of action.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoterapia , Melanoma/terapia , Microambiente Tumoral , Estudo de Associação Genômica Ampla , Humanos , Melanoma/genética , Melanoma/imunologia , Nivolumabe , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T , Transcriptoma
3.
Cell ; 170(6): 1109-1119.e10, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886381

RESUMO

Here we report a phase 1b clinical trial testing the impact of oncolytic virotherapy with talimogene laherparepvec on cytotoxic T cell infiltration and therapeutic efficacy of the anti-PD-1 antibody pembrolizumab. Twenty-one patients with advanced melanoma were treated with talimogene laherparepvec followed by combination therapy with pembrolizumab. Therapy was generally well tolerated, with fatigue, fevers, and chills as the most common adverse events. No dose-limiting toxicities occurred. Confirmed objective response rate was 62%, with a complete response rate of 33% per immune-related response criteria. Patients who responded to combination therapy had increased CD8+ T cells, elevated PD-L1 protein expression, as well as IFN-γ gene expression on several cell subsets in tumors after talimogene laherparepvec treatment. Response to combination therapy did not appear to be associated with baseline CD8+ T cell infiltration or baseline IFN-γ signature. These findings suggest that oncolytic virotherapy may improve the efficacy of anti-PD-1 therapy by changing the tumor microenvironment. VIDEO ABSTRACT.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Melanoma/terapia , Terapia Viral Oncolítica/efeitos adversos , Terapia Combinada , Herpesviridae/genética , Humanos , Imunoterapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Microambiente Tumoral
5.
Nat Immunol ; 14(10): 1014-22, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24048123

RESUMO

Most tumor cells express antigens that can mediate recognition by host CD8(+) T cells. Cancers that are detected clinically must have evaded antitumor immune responses to grow progressively. Recent work has suggested two broad categories of tumor escape based on cellular and molecular characteristics of the tumor microenvironment. One major subset shows a T cell-inflamed phenotype consisting of infiltrating T cells, a broad chemokine profile and a type I interferon signature indicative of innate immune activation. These tumors appear to resist immune attack through the dominant inhibitory effects of immune system-suppressive pathways. The other major phenotype lacks this T cell-inflamed phenotype and appears to resist immune attack through immune system exclusion or ignorance. These two major phenotypes of tumor microenvironment may require distinct immunotherapeutic interventions for maximal therapeutic effect.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Ativação Linfocitária , Neoplasias/terapia , Células Estromais/imunologia , Células Estromais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
6.
Oncologist ; 28(5): 440-448, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36595378

RESUMO

BACKGROUND: Side effects of immune checkpoint inhibitors (ICIs), called immune-related adverse events (irAEs), closely resemble primary autoimmune or rheumatic diseases. We aimed to understand the clinical utility of rheumatic autoantibodies (rhAbs) for diagnosing irAEs. PATIENTS AND METHODS: Patients without pre-existing autoimmune disease (pAID) who had cancer treated with ICI(s) treatment from 1/1/2011 to 12/21/2020 and a rhAb checked were retrospectively identified. Logistic regression assessed associations between autoantibodies and irAEs, cancer outcome, and survival. Specificity, sensitivity, and positive/negative predictive values (PPV, NPV) were estimated for key rhAbs and ICI-arthritis. Kaplan-Meier analyzed objective response rate (ORR) and overall survival (OS). RESULTS: A total of 2662 patients were treated with≥1 ICIs. One hundred and thirty-five without pAID had ≥ 1 rhAb tested. Of which 70/135(52%) were female; median age at cancer diagnosis was 62 years with most common cancers: melanoma (23%) or non-small cell lung cancer (21%), 96/135 (75%) were anti-PD1/PDL1 treated. Eighty had a rhAb ordered before ICI, 96 after ICI, and 12 before and after. Eighty-two (61%) experienced an irAE, 33 (24%) with rheumatic-irAE. Pre-ICI RF showed significant association with rheumatic-irAEs (OR = 25, 95% CI, 1.52-410.86, P = .024). Pre- and post-ICI RF yielded high specificity for ICI-arthritis (93% and 78%), as did pre- and post-ICI CCP (100% and 91%). Pre-ICI RF carried 93% NPV and pre-ICI CCP had 89% PPV for ICI-arthritis. No variables were significantly correlated with ORR. Any-type irAE, rheumatic-irAE and ICI-arthritis were all associated with better OS (P = .000, P = .028, P = .019). CONCLUSIONS: Pre-ICI RF was associated with higher odds of rheumatic-irAEs. IrAEs had better OS; therefore, clinical contextualization for rhAbs is critical to prevent unnecessary withholding of lifesaving ICI for fear of irAEs.


Assuntos
Artrite , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Autoanticorpos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico
7.
J Transl Med ; 21(1): 508, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507765

RESUMO

Outcomes for patients with melanoma have improved over the past decade with the clinical development and approval of immunotherapies targeting immune checkpoint receptors such as programmed death-1 (PD-1), programmed death ligand 1 (PD-L1) or cytotoxic T lymphocyte antigen-4 (CTLA-4). Combinations of these checkpoint therapies with other agents are now being explored to improve outcomes and enhance benefit-risk profiles of treatment. Alternative inhibitory receptors have been identified that may be targeted for anti-tumor immune therapy, such as lymphocyte-activation gene-3 (LAG-3), as have several potential target oncogenes for molecularly targeted therapy, such as tyrosine kinase inhibitors. Unfortunately, many patients still progress and acquire resistance to immunotherapy and molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been shown to improve prognosis compared to monotherapy. The number of new combinations treatment under development for melanoma provides options for the number of patients to achieve a therapeutic benefit. Many diagnostic and prognostic assays have begun to show clinical applicability providing additional tools to optimize and individualize treatments. However, the question on the optimal algorithm of first- and later-line therapies and the search for biomarkers to guide these decisions are still under investigation. This year, the Melanoma Bridge Congress (Dec 1st-3rd, 2022, Naples, Italy) addressed the latest advances in melanoma research, focusing on themes of paramount importance for melanoma prevention, diagnosis and treatment. This included sessions dedicated to systems biology on immunotherapy, immunogenicity and gene expression profiling, biomarkers, and combination treatment strategies.


Assuntos
Melanoma , Humanos , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia , Antígeno CTLA-4 , Itália
8.
Immunity ; 41(5): 830-42, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517615

RESUMO

Spontaneous T cell responses against tumors occur frequently and have prognostic value in patients. The mechanism of innate immune sensing of immunogenic tumors leading to adaptive T cell responses remains undefined, although type I interferons (IFNs) are implicated in this process. We found that spontaneous CD8(+) T cell priming against tumors was defective in mice lacking stimulator of interferon genes complex (STING), but not other innate signaling pathways, suggesting involvement of a cytosolic DNA sensing pathway. In vitro, IFN-? production and dendritic cell activation were triggered by tumor-cell-derived DNA, via cyclic-GMP-AMP synthase (cGAS), STING, and interferon regulatory factor 3 (IRF3). In the tumor microenvironment in vivo, tumor cell DNA was detected within host antigen-presenting cells, which correlated with STING pathway activation and IFN-? production. Our results demonstrate that a major mechanism for innate immune sensing of cancer occurs via the host STING pathway, with major implications for cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , DNA/imunologia , Ativação Linfocitária/imunologia , Melanoma Experimental/imunologia , Proteínas de Membrana/imunologia , Imunidade Adaptativa , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Células Dendríticas/imunologia , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Interferon beta/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Nucleotidiltransferases , Receptores de Antígenos de Linfócitos T/imunologia , Receptores Purinérgicos P2X7/genética , Receptor 4 Toll-Like/genética , Receptor Toll-Like 9/genética , Microambiente Tumoral/imunologia
9.
Immunity ; 41(5): 843-52, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517616

RESUMO

Ionizing radiation-mediated tumor regression depends on type I interferon (IFN) and the adaptive immune response, but several pathways control I IFN induction. Here, we demonstrate that adaptor protein STING, but not MyD88, is required for type I IFN-dependent antitumor effects of radiation. In dendritic cells (DCs), STING was required for IFN-? induction in response to irradiated-tumor cells. The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS) mediated sensing of irradiated-tumor cells in DCs. Moreover, STING was essential for radiation-induced adaptive immune responses, which relied on type I IFN signaling on DCs. Exogenous IFN-? treatment rescued the cross-priming by cGAS or STING-deficient DCs. Accordingly, activation of STING by a second messenger cGAMP administration enhanced antitumor immunity induced by radiation. Thus radiation-mediated antitumor immunity in immunogenic tumors requires a functional cytosolic DNA-sensing pathway and suggests that cGAMP treatment might provide a new strategy to improve radiotherapy.


Assuntos
DNA/imunologia , Proteínas de Membrana/genética , Neoplasias/radioterapia , Nucleotidiltransferases/imunologia , Imunidade Adaptativa , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Antineoplásicos/farmacologia , Células Cultivadas , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Interferon beta/biossíntese , Interferon beta/imunologia , Interferon beta/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Neoplasias/imunologia , Nucleotídeos Cíclicos/farmacologia , Interferência de RNA , RNA Interferente Pequeno , Radiação Ionizante , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/imunologia , Xantonas/farmacologia
10.
Immunol Rev ; 290(1): 24-38, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355488

RESUMO

The fact that a subset of human cancers showed evidence for a spontaneous adaptive immune response as reflected by the T cell-inflamed tumor microenvironment phenotype led to the search for candidate innate immune pathways that might be driving such endogenous responses. Preclinical studies indicated a major role for the host STING pathway, a cytosolic DNA sensing pathway, as a proximal event required for optimal type I interferon production, dendritic cell activation, and priming of CD8+ T cells against tumor-associated antigens. STING agonists are therefore being developed as a novel cancer therapeutic, and a greater understanding of STING pathway regulation is leading to a broadened list of candidate immune regulatory targets. Early phase clinical trials of intratumoral STING agonists are already showing promise, alone and in combination with checkpoint blockade. Further advancement will derive from a deeper understanding of STING pathway biology as well as mechanisms of response vs resistance in individual cancer patients.


Assuntos
Antineoplásicos/uso terapêutico , Proteínas de Membrana/agonistas , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Biomarcadores , Terapia Combinada , Proteínas de Ligação a DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Imunomodulação/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Neoplasias/diagnóstico , Neoplasias/imunologia , Resultado do Tratamento
11.
Gastroenterology ; 160(2): 600-613, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253684

RESUMO

The commensal microbiota has been implicated in the regulation of a diverse array of physiological processes, both within the gastrointestinal tract and at distant tissue sites. Cancer is no exception, and distinct aspects of the microbiota have been reported to have either pro- or anti-tumor effects. The functional role of the microbiota in regulating not only mucosal but also systemic immune responses has led to investigations into the impact on cancer immunotherapies, particularly with agents targeting the immunologic checkpoints PD-1 and CTLA-4. Microbial sequencing and reconstitution of germ-free mice have indicated both positive and negative regulatory bacteria likely exist, which either promote or interfere with immunotherapy efficacy. These collective findings have led to the development of clinical trials pursuing microbiome-based therapeutic interventions, with the hope of expanding immunotherapy efficacy. This review summarizes recent knowledge about the relationship between the host microbiota and cancer and anti-tumor immune response, with implications for cancer therapy.


Assuntos
Microbioma Gastrointestinal/imunologia , Neoplasias/imunologia , Animais , Humanos , Imunidade/imunologia , Imunoterapia , Camundongos , Microbiota/imunologia , Neoplasias/microbiologia , Neoplasias/terapia
12.
J Transl Med ; 20(1): 391, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36058945

RESUMO

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Assuntos
COVID-19 , Melanoma , Biomarcadores , Humanos , Imunoterapia/métodos , Itália , Melanoma/genética , Pandemias , Microambiente Tumoral
13.
J Transl Med ; 19(1): 278, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193182

RESUMO

Advances in immune checkpoint therapy and targeted therapy have led to improvement in overall survival for patients with advanced melanoma. Single agent checkpoint PD-1 blockade and combination with BRAF/MEK targeted therapy demonstrated benefit in overall survival (OS). Superior response rates have been demonstrated with combined PD-1/CTLA-4 blockade, with a significant OS benefit compared with single-agent PD-1 blockade. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers but they have yet to be fully characterized and implemented clinically. Overall, the progress in melanoma therapeutics and translational research will help to optimize treatment regimens to overcome resistance and develop robust biomarkers to guide clinical decision-making. During the Melanoma Bridge meeting (December 3rd-5th, 2020, Italy) we reviewed the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine.


Assuntos
Imunoterapia , Melanoma , Humanos , Itália , Melanoma/tratamento farmacológico , Terapia de Alvo Molecular , Microambiente Tumoral
14.
Ann Surg Oncol ; 28(13): 9039-9047, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34129153

RESUMO

BACKGROUND: Adjuvant therapy for stage III melanoma improves several measures of patient survival. However, decisions regarding inclusion of adjuvant therapies in the formularies of public payers necessarily consider the cost-effectiveness of those treatments. The objective of this study is to evaluate the cost-effectiveness of four recently approved adjuvant therapies for BRAF-mutant stage III melanoma in the Medicare patient population. METHODS: In this cost-effectiveness analysis, a Markov microsimulation model was used to simulate the healthcare trajectory of patients randomized to receive either first-line targeted therapy (dabrafenib-trametinib) or immunotherapy (ipilimumab, nivolumab, or pembrolizumab). The base case was a 65-year-old Medicare patient with BRAF V600E-mutant resected stage III melanoma. Possible health states included recurrence-free survival, adverse events, local recurrence, distant metastases, and death. Transition probabilities were determined from published clinical trials. Costs were estimated from reimbursement rates reported by CMS and the Red Book drug price database. Primary outcomes were costs (US$), life years, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). Model robustness was evaluated using one-way and probabilistic sensitivity analyses. RESULTS: Dabrafenib-trametinib provided 1.83 QALYs over no treatment and 0.23 QALYs over the most effective immunotherapy, pembrolizumab. Dabrafenib-trametinib was associated with an ICER of $95,758/QALY over no treatment and $285,863/QALY over pembrolizumab. Pembrolizumab yielded an ICER of $68,396/QALY over no treatment and dominated other immunotherapies. CONCLUSIONS: Pembrolizumab is cost-effective at a conventional willingness-to-pay (WTP) threshold, but dabrafenib-trametinib is not. Though dabrafenib-trametinib offers incremental QALYs, optimization of drug pricing is necessary to ensure dabrafenib-trametinib is accessible at an acceptable WTP threshold.


Assuntos
Melanoma , Neoplasias Cutâneas , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Análise Custo-Benefício , Humanos , Medicare , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Anos de Vida Ajustados por Qualidade de Vida , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Estados Unidos
15.
Nature ; 523(7559): 231-5, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25970248

RESUMO

Melanoma treatment is being revolutionized by the development of effective immunotherapeutic approaches. These strategies include blockade of immune-inhibitory receptors on activated T cells; for example, using monoclonal antibodies against CTLA-4, PD-1, and PD-L1 (refs 3-5). However, only a subset of patients responds to these treatments, and data suggest that therapeutic benefit is preferentially achieved in patients with a pre-existing T-cell response against their tumour, as evidenced by a baseline CD8(+) T-cell infiltration within the tumour microenvironment. Understanding the molecular mechanisms that underlie the presence or absence of a spontaneous anti-tumour T-cell response in subsets of cases, therefore, should enable the development of therapeutic solutions for patients lacking a T-cell infiltrate. Here we identify a melanoma-cell-intrinsic oncogenic pathway that contributes to a lack of T-cell infiltration in melanoma. Molecular analysis of human metastatic melanoma samples revealed a correlation between activation of the WNT/ß-catenin signalling pathway and absence of a T-cell gene expression signature. Using autochthonous mouse melanoma models we identified the mechanism by which tumour-intrinsic active ß-catenin signalling results in T-cell exclusion and resistance to anti-PD-L1/anti-CTLA-4 monoclonal antibody therapy. Specific oncogenic signals, therefore, can mediate cancer immune evasion and resistance to immunotherapies, pointing to new candidate targets for immune potentiation.


Assuntos
Melanoma/imunologia , Melanoma/fisiopatologia , Transdução de Sinais , Linfócitos T/imunologia , Microambiente Tumoral/imunologia , beta Catenina/imunologia , Animais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia , Camundongos , Proteínas Wnt/imunologia
16.
J Transl Med ; 18(1): 346, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32894202

RESUMO

The melanoma treatment landscape changed in 2011 with the approval of the first anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4 checkpoint inhibitor and of the first BRAF-targeted monoclonal antibody, both of which significantly improved overall survival (OS). Since then, improved understanding of the tumor microenvironment (TME) and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. The approval of new immune and targeted therapies has further improved outcomes for patients with advanced melanoma and other combination modalities are also being explored such as chemotherapy, radiotherapy, electrochemotherapy and surgery. In addition, different strategies of drugs administration including sequential or combination treatment are being tested. Approaches to overcome resistance and to potentiate the immune response are being developed. Increasing evidence emerges that tissue and blood-based biomarkers can predict the response to a therapy. The latest findings in melanoma research, including insights into the tumor microenvironment and new biomarkers, improved understanding of tumor immune response and resistance, novel approaches for combination strategies and the role of neoadjuvant and adjuvant therapy, were the focus of discussions at the Melanoma Bridge meeting (5-7 December, 2019, Naples, Italy), which are summarized in this report.


Assuntos
Imunoterapia , Melanoma , Antígeno CTLA-4 , Terapia Combinada , Humanos , Itália , Melanoma/terapia , Microambiente Tumoral
17.
Lancet Oncol ; 20(8): 1083-1097, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31221619

RESUMO

BACKGROUND: Immunotherapy combination treatments can improve patient outcomes. Epacadostat, an IDO1 selective inhibitor, and pembrolizumab, a PD-1 inhibitor, showed promising antitumour activity in the phase 1-2 ECHO-202/KEYNOTE-037 study in advanced melanoma. In this trial, we aimed to compare progression-free survival and overall survival in patients with unresectable stage III or IV melanoma receiving epacadostat plus pembrolizumab versus placebo plus pembrolizumab. METHODS: In this international, randomised, placebo-controlled, double-blind, parallel-group, phase 3 trial, eligible participants were aged 18 years or older, with unresectable stage III or IV melanoma previously untreated with PD-1 or PD-L1 checkpoint inhibitors, an ECOG performance status of 0 or 1, and had a known BRAFV600 mutant status or consented to BRAFV600 mutation testing during screening. Patients were stratified by PD-L1 expression and BRAFV600 mutation status and randomly assigned (1:1) through a central interactive voice and integrated web response system to receive epacadostat 100 mg orally twice daily plus pembrolizumab 200 mg intravenously every 3 weeks or placebo plus pembrolizumab for up to 2 years. We used block randomisation with a block size of four in each stratum. Primary endpoints were progression-free survival and overall survival in the intention-to-treat population. The safety analysis population included randomly assigned patients who received at least one dose of study treatment. The study was stopped after the second interim analysis; follow-up for safety is ongoing. This study is registered with ClinicalTrials.gov, number NCT02752074. FINDINGS: Between June 21, 2016, and Aug 7, 2017, 928 patients were screened and 706 patients were randomly assigned to receive epacadostat plus pembrolizumab (n=354) or placebo plus pembrolizumab (n=352). Median follow-up was 12·4 months (IQR 10·3-14·5). No significant differences were found between the treatment groups for progression-free survival (median 4·7 months, 95% CI 2·9-6·8, for epacadostat plus pembrolizumab vs 4·9 months, 2·9-6·8, for placebo plus pembrolizumab; hazard ratio [HR] 1·00, 95% CI 0·83-1·21; one-sided p=0·52) or overall survival (median not reached in either group; epacadostat plus pembrolizumab vs placebo plus pembrolizumab: HR 1·13, 0·86-1·49; one-sided p=0·81). The most common grade 3 or worse treatment-related adverse event was lipase increase, which occurred in 14 (4%) of 353 patients receiving epacadostat plus pembrolizumab and 11 (3%) of 352 patients receiving placebo plus pembrolizumab. Treatment-related serious adverse events were reported in 37 (10%) of 353 patients receiving epacadostat plus pembrolizumab and 32 (9%) of 352 patients receiving placebo plus pembrolizumab. There were no treatment-related deaths in either treatment group. INTERPRETATION: Epacadostat 100 mg twice daily plus pembrolizumab did not improve progression-free survival or overall survival compared with placebo plus pembrolizumab in patients with unresectable or metastatic melanoma. The usefulness of IDO1 inhibition as a strategy to enhance anti-PD-1 therapy activity in cancer remains uncertain. FUNDING: Incyte Corporation, in collaboration with Merck Sharp & Dohme.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Melanoma/tratamento farmacológico , Oximas/administração & dosagem , Sulfonamidas/administração & dosagem , Adulto , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Intervalo Livre de Progressão
18.
J Transl Med ; 17(1): 234, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331337

RESUMO

Diagnosis of melanocytic lesions, correct prognostication of patients, selection of appropriate adjuvant and systemic therapies, and prediction of response to a given therapy remain very real challenges in melanoma. Recent studies have shown that immune checkpoint blockade that represents a forefront in cancer therapy, provide responses but they are not universal. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers they have yet to be fully characterized and implemented clinically. For example, advancements in sequencing and the understanding of the tumor microenvironment in melanoma have led to the use of genome sequencing and gene expression for development of multi-marker assays that show association with inflammatory state of the tumor and potential to predict response to immunotherapy. As such, melanoma serves as a model system for understanding cancer immunity and patient response to immunotherapy, either alone or in combination with other treatment modalities. Overall, the aim for the translational and clinical studies is to achieve incremental improvements through the development and identification of optimal treatment regimens, which increasingly involve doublet as well as triplet combinations, as well as through development of biomarkers to improve immune response. These and other topics in the management of melanoma were the focus of discussions at the fourth Melanoma Bridge meeting (November 29th-December 1st, 2018, Naples, Italy), which is summarised in this report.


Assuntos
Melanoma/patologia , Biomarcadores Tumorais/metabolismo , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Humanos , Imunoterapia , Itália , Melanoma/imunologia , Melanoma/terapia , Estadiamento de Neoplasias
19.
Proc Natl Acad Sci U S A ; 113(48): E7759-E7768, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27837020

RESUMO

Melanoma metastases can be categorized by gene expression for the presence of a T-cell-inflamed tumor microenvironment, which correlates with clinical efficacy of immunotherapies. T cells frequently recognize mutational antigens corresponding to nonsynonymous somatic mutations (NSSMs), and in some cases shared differentiation or cancer-testis antigens. Therapies are being pursued to trigger immune infiltration into non-T-cell-inflamed tumors in the hope of rendering them immunotherapy responsive. However, whether those tumors express antigens capable of T-cell recognition has not been explored. To address this question, 266 melanomas from The Cancer Genome Atlas (TCGA) were categorized by the presence or absence of a T-cell-inflamed gene signature. These two subsets were interrogated for cancer-testis, differentiation, and somatic mutational antigens. No statistically significant differences were observed, including density of NSSMs. Focusing on hypothetical HLA-A2+ binding scores, 707 peptides were synthesized, corresponding to all identified candidate neoepitopes. No differences were observed in measured HLA-A2 binding between inflamed and noninflamed cohorts. Twenty peptides were randomly selected from each cohort to evaluate priming and recognition by human CD8+ T cells in vitro with 25% of peptides confirmed to be immunogenic in both. A similar gene expression profile applied to all solid tumors of TCGA revealed no association between T-cell signature and NSSMs. Our results indicate that lack of spontaneous immune infiltration in solid tumors is unlikely due to lack of antigens. Strategies that improve T-cell infiltration into tumors may therefore be able to facilitate clinical response to immunotherapy once antigens become recognized.


Assuntos
Antígenos de Neoplasias/imunologia , Linfócitos do Interstício Tumoral/fisiologia , Melanoma/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/fisiologia , Antígenos de Neoplasias/metabolismo , Expressão Gênica , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Microambiente Tumoral
20.
J Transl Med ; 16(1): 207, 2018 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-30031393

RESUMO

Metastatic melanoma represents a challenging clinical situation and, until relatively recently, there was an absence of effective treatment options. However, in 2011, the advanced melanoma treatment landscape was revolutionised with the approval of the anti-cytotoxic T-lymphocyte-associated protein-4 checkpoint inhibitor ipilimumab and the selective BRAF kinase inhibitor vemurafenib, both of which significantly improved overall survival. Since then, availability of new immunotherapies, especially the anti-programmed death-1 checkpoint inhibitors, as well as other targeted therapies, have further improved outcomes for patients with advanced melanoma. Seven years on from the first approval of these novel therapies, evidence for the use of various immune-based and targeted approaches is continuing to increase at a rapid rate. Improved understanding of the tumour microenvironment and tumour immuno-evasion strategies has resulted in different approaches to target and harness the immune response. These new immune-based approaches offer the opportunity for various approaches with distinct modes of action being used in combination with one another, as well as combined with other treatment modalities such as targeted therapy, electrochemotherapy and surgery. The increasing number of treatment options that are now available has resulted in a growing need to identify which patients will derive most benefit from which treatments. Much research is now focused on the identification of biomarkers that can be utilised to help select patients for treatment. These and other recent advances in the management of melanoma were the focus of discussions at the third Melanoma Bridge meeting (30 November-2 December, 2017, Naples, Italy), which is summarised in this report.


Assuntos
Melanoma/patologia , Biomarcadores Tumorais/metabolismo , Ensaios Clínicos como Assunto , Humanos , Imunoterapia , Melanoma/imunologia , Modelos Biológicos , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa