Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Annu Rev Immunol ; 36: 667-694, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677479

RESUMO

Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.


Assuntos
Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Viroses/etiologia , Viroses/metabolismo , Vírus/imunologia , Animais , RNA Helicases DEAD-box/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , RNA Helicases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Receptores Imunológicos , Transdução de Sinais , Receptores Toll-Like/metabolismo
2.
Cell ; 185(9): 1588-1601.e14, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35413241

RESUMO

Immune memory is tailored by cues that lymphocytes perceive during priming. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic created a situation in which nascent memory could be tracked through additional antigen exposures. Both SARS-CoV-2 infection and vaccination induce multifaceted, functional immune memory, but together, they engender improved protection from disease, termed hybrid immunity. We therefore investigated how vaccine-induced memory is shaped by previous infection. We found that following vaccination, previously infected individuals generated more SARS-CoV-2 RBD-specific memory B cells and variant-neutralizing antibodies and a distinct population of IFN-γ and IL-10-expressing memory SARS-CoV-2 spike-specific CD4+ T cells than previously naive individuals. Although additional vaccination could increase humoral memory in previously naive individuals, it did not recapitulate the distinct CD4+ T cell cytokine profile observed in previously infected subjects. Thus, imprinted features of SARS-CoV-2-specific memory lymphocytes define hybrid immunity.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/imunologia , Humanos , Imunidade Humoral , Glicoproteína da Espícula de Coronavírus , Linfócitos T
3.
Cell ; 184(1): 169-183.e17, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33296701

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is causing a global pandemic, and cases continue to rise. Most infected individuals experience mildly symptomatic coronavirus disease 2019 (COVID-19), but it is unknown whether this can induce persistent immune memory that could contribute to immunity. We performed a longitudinal assessment of individuals recovered from mild COVID-19 to determine whether they develop and sustain multifaceted SARS-CoV-2-specific immunological memory. Recovered individuals developed SARS-CoV-2-specific immunoglobulin (IgG) antibodies, neutralizing plasma, and memory B and memory T cells that persisted for at least 3 months. Our data further reveal that SARS-CoV-2-specific IgG memory B cells increased over time. Additionally, SARS-CoV-2-specific memory lymphocytes exhibited characteristics associated with potent antiviral function: memory T cells secreted cytokines and expanded upon antigen re-encounter, whereas memory B cells expressed receptors capable of neutralizing virus when expressed as monoclonal antibodies. Therefore, mild COVID-19 elicits memory lymphocytes that persist and display functional hallmarks of antiviral immunity.


Assuntos
COVID-19/imunologia , COVID-19/fisiopatologia , Memória Imunológica , SARS-CoV-2/fisiologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , COVID-19/sangue , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/química , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/metabolismo , Linfócitos T/imunologia
4.
Immunity ; 56(7): 1443-1450, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37437537

RESUMO

Innate immunity and the actions of type I and III interferons (IFNs) are essential for protection from SARS-CoV-2 and COVID-19. Each is induced in response to infection and serves to restrict viral replication and spread while directing the polarization and modulation of the adaptive immune response. Owing to the distribution of their specific receptors, type I and III IFNs, respectively, impart systemic and local actions. Therapeutic IFN has been administered to combat COVID-19 but with differential outcomes when given early or late in infection. In this perspective, we sort out the role of innate immunity and complex actions of IFNs in the context of SARS-CoV-2 infection and COVID-19. We conclude that IFNs are a beneficial component of innate immunity that has mediated natural clearance of infection in over 700 million people. Therapeutic induction of innate immunity and use of IFN should be featured in strategies to treat acute SARS-CoV-2 infection in people at risk for severe COVID-19.


Assuntos
COVID-19 , Interferons , Humanos , Interferons/uso terapêutico , SARS-CoV-2 , Imunidade Inata , Movimento Celular
5.
Cell ; 169(2): 301-313.e11, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366204

RESUMO

Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3-/- mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3-/- mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS.


Assuntos
Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Quimiocinas/imunologia , Leucócitos/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Neurônios/metabolismo
6.
Nat Immunol ; 20(8): 1035-1045, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31235953

RESUMO

Type III interferon (IFN-λ) is important for innate immune protection at mucosal surfaces and has therapeutic benefit against influenza A virus (IAV) infection. However, the mechanisms by which IFN-λ programs adaptive immune protection against IAV are undefined. Here we found that IFN-λ signaling in dendritic cell (DC) populations was critical for the development of protective IAV-specific CD8+ T cell responses. Mice lacking the IFN-λ receptor (Ifnlr1-/-) had blunted CD8+ T cell responses relative to wild type and exhibited reduced survival after heterosubtypic IAV re-challenge. Analysis of DCs revealed IFN-λ signaling directed the migration and function of CD103+ DCs for development of optimal antiviral CD8+ T cell responses, and bioinformatic analyses identified IFN-λ regulation of a DC IL-10 immunoregulatory network. Thus, IFN-λ serves a critical role in bridging innate and adaptive immunity from lung mucosa to lymph nodes to program DCs to direct effective T cell immunity against IAV.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vírus da Influenza A/imunologia , Interferon gama/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Interferon/imunologia , Animais , Linhagem Celular , Cães , Feminino , Imunidade Inata/imunologia , Interleucina-10/imunologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interferon/genética , Receptor de Interferon gama
7.
Nat Immunol ; 20(12): 1610-1620, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740798

RESUMO

The initial response to viral infection is anticipatory, with host antiviral restriction factors and pathogen sensors constantly surveying the cell to rapidly mount an antiviral response through the synthesis and downstream activity of interferons. After pathogen clearance, the host's ability to resolve this antiviral response and return to homeostasis is critical. Here, we found that isoforms of the RNA-binding protein ZAP functioned as both a direct antiviral restriction factor and an interferon-resolution factor. The short isoform of ZAP bound to and mediated the degradation of several host interferon messenger RNAs, and thus acted as a negative feedback regulator of the interferon response. In contrast, the long isoform of ZAP had antiviral functions and did not regulate interferon. The two isoforms contained identical RNA-targeting domains, but differences in their intracellular localization modulated specificity for host versus viral RNA, which resulted in disparate effects on viral replication during the innate immune response.


Assuntos
Infecções por Alphavirus/imunologia , Interferons/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Repressoras/metabolismo , Sindbis virus/fisiologia , Infecções por Alphavirus/genética , Retroalimentação Fisiológica , Células HEK293 , Células Hep G2 , Homeostase , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , RNA/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Replicação Viral
8.
Cell ; 163(7): 1808-1808.e1, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687364

RESUMO

Interferons (IFNs) are crucial cytokines of antimicrobial, antitumor, and immunomodulatory activity. The three types of IFN (I, II, and III) are classified by their receptor specificity and sequence homology. IFNs are produced and secreted by cells in response to specific stimuli. Here, we review the subsequent IFN signaling events occurring through unique receptors leading to regulation of gene expression for modulation of innate and adaptive immunity. To view this SnapShot, open or download the PDF.


Assuntos
Interferons/metabolismo , Transdução de Sinais , Animais , Humanos , Interferons/classificação , Receptores de Interferon
10.
Nat Immunol ; 18(7): 744-752, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28553952

RESUMO

The single-nucleotide polymorphism rs1990760 in the gene encoding the cytosolic viral sensor IFIH1 results in an amino-acid change (A946T; IFIH1T946) that is associated with multiple autoimmune diseases. The effect of this polymorphism on both viral sensing and autoimmune pathogenesis remains poorly understood. Here we found that human peripheral blood mononuclear cells (PBMCs) and cell lines expressing the risk variant IFIH1T946 exhibited heightened basal and ligand-triggered production of type I interferons. Consistent with those findings, mice with a knock-in mutation encoding IFIH1T946 displayed enhanced basal expression of type I interferons, survived a lethal viral challenge and exhibited increased penetrance in autoimmune models, including a combinatorial effect with other risk variants. Furthermore, IFIH1T946 mice manifested an embryonic survival defect consistent with enhanced responsiveness to RNA self ligands. Together our data support a model wherein the production of type I interferons driven by an autoimmune risk variant and triggered by ligand functions to protect against viral challenge, which probably accounts for its selection within human populations but provides this advantage at the cost of modestly promoting the risk of autoimmunity.


Assuntos
Autoimunidade/genética , Infecções por Cardiovirus/genética , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/genética , Adolescente , Adulto , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Southern Blotting , Infecções por Cardiovirus/imunologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Vírus da Encefalomiocardite/imunologia , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Immunoblotting , Helicase IFIH1 Induzida por Interferon/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Viroses/genética , Viroses/imunologia , Adulto Jovem
11.
Nat Immunol ; 17(5): 514-522, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27043414

RESUMO

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.


Assuntos
DNA/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas de Membrana/imunologia , Proteínas Quinases S6 Ribossômicas 90-kDa/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células Cultivadas , Citosol/imunologia , Citosol/metabolismo , Citosol/virologia , DNA/genética , DNA/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células HEK293 , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia , Humanos , Imunização/métodos , Immunoblotting , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Nucleotidiltransferases/metabolismo , Ovalbumina/genética , Ovalbumina/imunologia , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo
12.
Immunity ; 51(3): 451-464.e6, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471108

RESUMO

Type I and III interferons (IFNs) activate similar downstream signaling cascades, but unlike type I IFNs, type III IFNs (IFNλ) do not elicit strong inflammatory responses in vivo. Here, we examined the molecular mechanisms underlying this disparity. Type I and III IFNs displayed kinetic differences in expression of IFN-stimulated genes and proinflammatory responses, with type I IFNs preferentially stimulating expression of the transcription factor IRF1. Type III IFNs failed to induce IRF1 expression because of low IFNλ receptor abundance and insufficient STAT1 activation on epithelial cells and thus did not activate the IRF1 proinflammatory gene program. Rather, IFNλ stimulation preferentially induced factors implicated in tissue repair. Our findings suggest that IFN receptor compartmentalization and abundance confer a spatiotemporal division of labor where type III IFNs control viral spread at the site of the infection while restricting tissue damage; the transient induction of inflammatory responses by type I IFNs recruits immune effectors to promote protective immunity.


Assuntos
Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/imunologia , Interferons/imunologia , Animais , Linhagem Celular , Células Epiteliais/imunologia , Humanos , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/imunologia , Interferon lambda
13.
Immunity ; 50(1): 64-76.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635240

RESUMO

As long-lived post-mitotic cells, neurons employ unique strategies to resist pathogen infection while preserving cellular function. Here, using a murine model of Zika virus (ZIKV) infection, we identified an innate immune pathway that restricts ZIKV replication in neurons and is required for survival upon ZIKV infection of the central nervous system (CNS). We found that neuronal ZIKV infection activated the nucleotide sensor ZBP1 and the kinases RIPK1 and RIPK3, core components of virus-induced necroptotic cell death signaling. However, activation of this pathway in ZIKV-infected neurons did not induce cell death. Rather, RIPK signaling restricted viral replication by altering cellular metabolism via upregulation of the enzyme IRG1 and production of the metabolite itaconate. Itaconate inhibited the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes. These findings demonstrate an immunometabolic mechanism of viral restriction during neuroinvasive infection.


Assuntos
Glicoproteínas/metabolismo , Hidroliases/metabolismo , Neurônios/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Infecção por Zika virus/imunologia , Zika virus/fisiologia , Animais , Morte Celular , Células Cultivadas , Modelos Animais de Doenças , Glicoproteínas/genética , Humanos , Hidroliases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroproteção , RNA Viral/imunologia , Proteínas de Ligação a RNA , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Succinato Desidrogenase/metabolismo , Succinatos/metabolismo , Replicação Viral
14.
Nature ; 610(7931): 373-380, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198789

RESUMO

An immunosuppressive tumour microenvironment is a major obstacle in the control of pancreatic and other solid cancers1-3. Agonists of the stimulator of interferon genes (STING) protein trigger inflammatory innate immune responses to potentially overcome tumour immunosuppression4. Although these agonists hold promise as potential cancer therapies5, tumour resistance to STING monotherapy has emerged in clinical trials and the mechanism(s) is unclear5-7. Here we show that the administration of five distinct STING agonists, including cGAMP, results in an expansion of human and mouse interleukin (IL)-35+ regulatory B cells in pancreatic cancer. Mechanistically, cGAMP drives expression of IL-35 by B cells in an IRF3-dependent but type I interferon-independent manner. In several preclinical cancer models, the loss of STING signalling in B cells increases tumour control. Furthermore, anti-IL-35 blockade or genetic ablation of IL-35 in B cells also reduces tumour growth. Unexpectedly, the STING-IL-35 axis in B cells reduces proliferation of natural killer (NK) cells and attenuates the NK-driven anti-tumour response. These findings reveal an intrinsic barrier to systemic STING agonist monotherapy and provide a combinatorial strategy to overcome immunosuppression in tumours.


Assuntos
Linfócitos B Reguladores , Células Matadoras Naturais , Neoplasias , Animais , Linfócitos B Reguladores/imunologia , Humanos , Imunidade Inata/imunologia , Imunoterapia , Fator Regulador 3 de Interferon , Interferon Tipo I/imunologia , Interleucinas/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Nucleotídeos Cíclicos/metabolismo , Microambiente Tumoral
15.
Nat Immunol ; 16(6): 554-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25988887

RESUMO

During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.


Assuntos
Infecções por HIV/imunologia , HIV-1/fisiologia , Imunidade Inata , Receptores de Reconhecimento de Padrão/imunologia , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Humanos , Evasão da Resposta Imune , Replicação Viral
16.
Mol Cell ; 74(4): 801-815.e6, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30952515

RESUMO

Interleukin-1 beta (IL-1ß) is a pleiotropic mediator of inflammation and is produced in response to a wide range of stimuli. During infection, IL-1ß production occurs in parallel with the onset of innate antimicrobial defenses, but the contribution of IL-1ß signaling to cell-intrinsic immunity is not defined. Here, we report that exogenous IL-1ß induces interferon regulatory factor 3 (IRF3) activation in human myeloid, fibroblast, and epithelial cells. IRF3 activation by IL-1ß is dependent upon the DNA-sensing pathway adaptor, stimulator of interferon genes (STING), through the recognition of cytosolic mtDNA by cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS). IL-1ß treatment results in interferon (IFN) production and activation of IFN signaling to direct a potent innate immune response that restricts dengue virus infection. This study identifies a new function for IL-1ß in the onset or enhancement of cell-intrinsic immunity, with important implications for cGAS-STING in integrating inflammatory and microbial cues for host defense.


Assuntos
DNA Mitocondrial/efeitos dos fármacos , Inflamação/genética , Interleucina-1beta/farmacologia , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , GMP Cíclico/genética , DNA Mitocondrial/genética , Dengue/tratamento farmacológico , Dengue/genética , Dengue/virologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , Vírus da Dengue/patogenicidade , Interações Hospedeiro-Patógeno/genética , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Inflamação/patologia , Inflamação/virologia , Fator Regulador 3 de Interferon/genética , Interferons/biossíntese , Interleucina-1beta/genética , Células Mieloides/virologia , Transdução de Sinais/efeitos dos fármacos
17.
Nat Immunol ; 15(1): 72-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24241692

RESUMO

IFNL3, which encodes interferon-λ3 (IFN-λ3), has received considerable attention in the hepatitis C virus (HCV) field, as many independent genome-wide association studies have identified a strong association between polymorphisms near IFNL3 and clearance of HCV. However, the mechanism underlying this association has remained elusive. In this study, we report the identification of a functional polymorphism (rs4803217) in the 3' untranslated region (UTR) of IFNL3 mRNA that dictated transcript stability. We found that this polymorphism influenced AU-rich element (ARE)-mediated decay (AMD) of IFNL3 mRNA, as well as the binding of HCV-induced microRNAs during infection. Together these pathways mediated robust repression of the unfavorable IFNL3 polymorphism. Our data reveal a previously unknown mechanism by which HCV attenuates the antiviral response and indicate new potential therapeutic targets for HCV treatment.


Assuntos
Elementos Ricos em Adenilato e Uridilato/genética , Interleucinas/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Estabilidade de RNA/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Citometria de Fluxo , Genótipo , Células Hep G2 , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Interferons , Interleucinas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
18.
Trends Immunol ; 44(4): 287-304, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894436

RESUMO

The initial development of cytomegalovirus (CMV) as a vaccine vector for HIV/simian immunodeficiency virus (SIV) was predicated on its potential to pre-position high-frequency, effector-differentiated, CD8+ T cells in tissues for immediate immune interception of nascent primary infection. This goal was achieved and also led to the unexpected discoveries that non-human primate (NHP) CMVs can be programmed to differentially elicit CD8+ T cell responses that recognize viral peptides via classical MHC-Ia, and/or MHC-II, and/or MHC-E, and that MHC-E-restricted CD8+ T cell responses can uniquely mediate stringent arrest and subsequent clearance of highly pathogenic SIV, an unprecedented type of vaccine-mediated protection. These discoveries delineate CMV vector-elicited MHC-E-restricted CD8+ T cells as a functionally distinct T cell response with the potential for superior efficacy against HIV-1, and possibly other infectious agents or cancers.


Assuntos
Vacinas contra a AIDS , Infecções por Citomegalovirus , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Linfócitos T CD8-Positivos , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Citomegalovirus
19.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38478395

RESUMO

MOTIVATION: Currently there is a lack of efficient computational pipelines/tools for conducting simultaneous genome mapping of pathogen-derived and host reads from single cell RNA sequencing (scRNAseq) output from pathogen-infected cells. Contemporary options include processes involving multiple steps and/or running multiple computational tools, increasing user operations time. RESULTS: To address the need for new tools to directly map and quantify pathogen and host sequence reads from within an infected cell from scRNAseq datasets in a single operation, we have built a python package, called scPathoQuant. scPathoQuant extracts sequences that were not aligned to the primary host genome, maps them to a pathogen genome of interest (here as demonstrated for viral pathogens), quantifies total reads mapping to the entire pathogen, quantifies reads mapping to individual pathogen genes, and finally integrates pathogen sequence counts into matrix files that are used by standard single cell pipelines for downstream analyses with only one command. We demonstrate that scPathoQuant provides a scRNAseq viral and host genome-wide sequence read abundance analysis that can differentiate and define multiple viruses in a single sample scRNAseq output. AVAILABILITY AND IMPLEMENTATION: The SPQ package is available software accessible at https://github.com/galelab/scPathoQuant (DOI 10.5281/zenodo.10463670) with test codes and datasets available https://github.com/galelab/Whitmore_scPathoQuant_testSets (DOI 10.5281/zenodo.10463677) to serve as a resource for the community.


Assuntos
Genoma , Software , Análise de Sequência de DNA , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala
20.
J Immunol ; 210(9): 1247-1256, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36939421

RESUMO

Retinoic acid-inducible gene I (RIG-I) is essential for activating host cell innate immunity to regulate the immune response against many RNA viruses. We previously identified that a small molecule compound, KIN1148, led to the activation of IFN regulatory factor 3 (IRF3) and served to enhance protection against influenza A virus (IAV) A/California/04/2009 infection. We have now determined direct binding of KIN1148 to RIG-I to drive expression of IFN regulatory factor 3 and NF-κB target genes, including specific immunomodulatory cytokines and chemokines. Intriguingly, KIN1148 does not lead to ATPase activity or compete with ATP for binding but activates RIG-I to induce antiviral gene expression programs distinct from type I IFN treatment. When administered in combination with a vaccine against IAV, KIN1148 induces both neutralizing Ab and IAV-specific T cell responses compared with vaccination alone, which induces comparatively poor responses. This robust KIN1148-adjuvanted immune response protects mice from lethal A/California/04/2009 and H5N1 IAV challenge. Importantly, KIN1148 also augments human CD8+ T cell activation. Thus, we have identified a small molecule RIG-I agonist that serves as an effective adjuvant in inducing noncanonical RIG-I activation for induction of innate immune programs that enhance adaptive immune protection of antiviral vaccination.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Humanos , Animais , Camundongos , Proteína DEAD-box 58/metabolismo , Virus da Influenza A Subtipo H5N1/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Adjuvantes Imunológicos , Antivirais/farmacologia , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa