Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Neurobiol Dis ; 166: 105655, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35143967

RESUMO

The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Disfunção Cognitiva/complicações , Perfilação da Expressão Gênica , Humanos , Organelas/metabolismo , Transcriptoma
2.
Glia ; 69(4): 997-1011, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33283891

RESUMO

Reactive astrocytes and dystrophic neurites, most aberrant presynaptic elements, are found surrounding amyloid-ß plaques in Alzheimer's disease (AD). We have previously shown that reactive astrocytes enwrap, phagocytose, and degrade dystrophic synapses in the hippocampus of APP mice and AD patients, but affecting less than 7% of dystrophic neurites, suggesting reduced phagocytic capacity of astrocytes in AD. Here, we aimed to gain insight into the underlying mechanisms by analyzing the capacity of primary astrocyte cultures to phagocytose and degrade isolated synapses (synaptoneurosomes, SNs) from APP (containing dystrophic synapses and amyloid-ß peptides), Tau (containing AT8- and AT100-positive phosphorylated Tau) and WT (controls) mice. We found highly reduced phagocytic and degradative capacity of SNs-APP, but not AT8/AT100-positive SNs-Tau, as compared with SNs-WT. The reduced astrocyte phagocytic capacity was verified in hippocampus from 12-month-old APP mice, since only 1.60 ± 3.81% of peri-plaque astrocytes presented phagocytic structures. This low phagocytic capacity did not depend on microglia-mediated astrocyte reactivity, because removal of microglia from the primary astrocyte cultures abrogated the expression of microglia-dependent genes in astrocytes, but did not affect the phagocytic impairment induced by oligomeric amyloid-ß alone. Taken together, our data suggest that amyloid-ß, but not hyperphosphorylated Tau, directly impairs the capacity of astrocytes to clear the pathological accumulation of oligomeric amyloid-ß, as well as of peri-plaque dystrophic synapses containing amyloid-ß, perhaps by reducing the expression of phagocytosis receptors such as Mertk and Megf10, thus increasing neuronal damage in AD. Therefore, the potentiation or recovery of astrocytic phagocytosis may be a novel therapeutic avenue in AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animais , Astrócitos , Modelos Animais de Doenças , Humanos , Proteínas de Membrana , Camundongos , Camundongos Transgênicos , Fagocitose , Placa Amiloide , Sinapses
3.
Glia ; 68(1): 5-26, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058383

RESUMO

Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease.


Assuntos
Astrócitos/fisiologia , Encéfalo/fisiologia , Neurociências/métodos , Biologia de Sistemas/métodos , Animais , Astrócitos/química , Encéfalo/citologia , Química Encefálica/fisiologia , Humanos , Neurônios/química , Neurônios/fisiologia , Neurociências/tendências , Optogenética/métodos , Biologia de Sistemas/tendências
4.
Glia ; 66(8): 1724-1735, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29575211

RESUMO

The prevalent view in neuroenergetics is that glucose is the main brain fuel, with neurons being mostly oxidative and astrocytes glycolytic. Evidence supporting that astrocyte mitochondria are functional has been overlooked. Here we sought to determine what is unique about astrocyte mitochondria by performing unbiased statistical comparisons of the mitochondriome in astrocytes and neurons. Using MitoCarta, a compendium of mitochondrial proteins, together with transcriptomes of mouse neurons and astrocytes, we generated cell-specific databases of nuclear genes encoding for mitochondrion proteins, ranked according to relative expression. Standard and in-house Gene Set Enrichment Analyses (GSEA) of five mouse transcriptomes revealed that genes encoding for enzymes involved in fatty acid oxidation (FAO) and amino acid catabolism are consistently more expressed in astrocytes than in neurons. FAO and oxidative-metabolism-related genes are also up-regulated in human cortical astrocytes versus the whole cortex, and in adult astrocytes versus fetal astrocytes. We thus present the first evidence of FAO in human astrocytes. Further, as shown in vitro, FAO coexists with glycolysis in astrocytes and is inhibited by glutamate. Altogether, these analyses provide arguments against the glucose-centered view of energy metabolism in astrocytes and reveal mitochondria as specialized organelles in these cells.


Assuntos
Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Glicólise/fisiologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Ácido Glutâmico/metabolismo , Humanos , Metabolismo dos Lipídeos , Camundongos , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Oxirredução
5.
Glia ; 66(3): 637-653, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29178139

RESUMO

Reactive astrogliosis, a complex process characterized by cell hypertrophy and upregulation of components of intermediate filaments, is a common feature in brains of Alzheimer's patients. Reactive astrocytes are found in close association with neuritic plaques; however, the precise role of these glial cells in disease pathogenesis is unknown. In this study, using immunohistochemical techniques and light and electron microscopy, we report that plaque-associated reactive astrocytes enwrap, engulf and may digest presynaptic dystrophies in the hippocampus of amyloid precursor protein/presenilin-1 (APP/PS1) mice. Microglia, the brain phagocytic population, was apparently not engaged in this clearance. Phagocytic reactive astrocytes were present in 35% and 67% of amyloid plaques at 6 and 12 months of age, respectively. The proportion of engulfed dystrophic neurites was low, around 7% of total dystrophies around plaques at both ages. This fact, along with the accumulation of dystrophic neurites during disease course, suggests that the efficiency of the astrocyte phagocytic process might be limited or impaired. Reactive astrocytes surrounding and engulfing dystrophic neurites were also detected in the hippocampus of Alzheimer's patients by confocal and ultrastructural analysis. We posit that the phagocytic activity of reactive astrocytes might contribute to clear dysfunctional synapses or synaptic debris, thereby restoring impaired neural circuits and reducing the inflammatory impact of damaged neuronal parts and/or limiting the amyloid pathology. Therefore, potentiation of the phagocytic properties of reactive astrocytes may represent a potential therapy in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Fagocitose/fisiologia , Sinapses/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/patologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Presenilina-1/genética , Presenilina-1/metabolismo , Sinapses/patologia
6.
Proc Natl Acad Sci U S A ; 112(51): 15556-61, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644572

RESUMO

Although the clustering of GFAP immunopositive astrocytes around amyloid-ß plaques in Alzheimer's disease has led to the widespread assumption that plaques attract astrocytes, recent studies suggest that astrocytes stay put in injury. Here we reexamine astrocyte migration to plaques, using quantitative spatial analysis and computer modeling to investigate the topology of astrocytes in 3D images obtained by two-photon microscopy of living APP/PS1 mice and WT littermates. In WT mice, cortical astrocyte topology fits a model in which a liquid of hard spheres exclude each other in a confined space. Plaques do not disturb this arrangement except at very large plaque loads, but, locally, cause subtle outward shifts of the astrocytes located in three tiers around plaques. These data suggest that astrocytes respond to plaque-induced neuropil injury primarily by changing phenotype, and hence function, rather than location.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/fisiologia , Placa Amiloide/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/patologia , Fenômenos Biofísicos , Movimento Celular , Simulação por Computador , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Neurológicos , Placa Amiloide/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Acta Neuropathol ; 133(2): 283-301, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28004277

RESUMO

The activation of the highly conserved unfolded protein response (UPR) is prominent in the pathogenesis of the most prevalent neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS), which are classically characterized by an accumulation of aggregated or misfolded proteins. This activation is orchestrated by three endoplasmic reticulum (ER) stress sensors: PERK, ATF6 and IRE1. These sensors transduce signals that induce the expression of the UPR gene programme. Here, we first identified an early activator of the UPR and investigated the role of a chronically activated UPR in the pathogenesis of X-linked adrenoleukodystrophy (X-ALD), a neurometabolic disorder that is caused by ABCD1 malfunction; ABCD1 transports very long-chain fatty acids (VLCFA) into peroxisomes. The disease manifests as inflammatory demyelination in the brain or and/or degeneration of corticospinal tracts, thereby resulting in spastic paraplegia, with the accumulation of intracellular VLCFA instead of protein aggregates. Using X-ALD mouse model (Abcd1 - and Abcd1 - /Abcd2 -/- mice) and X-ALD patient's fibroblasts and brain samples, we discovered an early engagement of the UPR. The response was characterized by the activation of the PERK and ATF6 pathways, but not the IRE1 pathway, showing a difference from the models of AD, PD or ALS. Inhibition of PERK leads to the disruption of homeostasis and increased apoptosis during ER stress induced in X-ALD fibroblasts. Redox imbalance appears to be the mechanism that initiates ER stress in X-ALD. Most importantly, we demonstrated that the bile acid tauroursodeoxycholate (TUDCA) abolishes UPR activation, which results in improvement of axonal degeneration and its associated locomotor impairment in Abcd1 - /Abcd2 -/- mice. Altogether, our preclinical data provide evidence for establishing the UPR as a key drug target in the pathogenesis cascade. Our study also highlights the potential role of TUDCA as a treatment for X-ALD and other axonopathies in which similar molecular mediators are implicated.


Assuntos
Adrenoleucodistrofia/fisiopatologia , Axônios/efeitos dos fármacos , Degeneração Neural/fisiopatologia , Ácido Tauroquenodesoxicólico/farmacologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Axônios/patologia , Humanos , Camundongos , Camundongos Knockout
8.
Glia ; 64(5): 853-74, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880229

RESUMO

The clinical challenge in acute injury as in traumatic brain injury (TBI) is to halt the delayed neuronal loss that occurs hours and days after the insult. Here we report that the activation of CREB-dependent transcription in reactive astrocytes prevents secondary injury in cerebral cortex after experimental TBI. The study was performed in a novel bitransgenic mouse in which a constitutively active CREB, VP16-CREB, was targeted to astrocytes with the Tet-Off system. Using histochemistry, qPCR, and gene profiling we found less neuronal death and damage, reduced macrophage infiltration, preserved mitochondria, and rescued expression of genes related to mitochondrial metabolism in bitransgenic mice as compared to wild type littermates. Finally, with meta-analyses using publicly available databases we identified a core set of VP16-CREB candidate target genes that may account for the neuroprotective effect. Enhancing CREB activity in astrocytes thus emerges as a novel avenue in acute brain post-injury therapeutics.


Assuntos
Astrócitos/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Proteína de Ligação a CREB/metabolismo , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Astrócitos/efeitos dos fármacos , Proteína de Ligação a CREB/genética , Células Cultivadas , Modelos Animais de Doenças , Etoposídeo/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/etiologia , Inflamação/prevenção & controle , Masculino , Metanálise como Assunto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas de Neurofilamentos/metabolismo
9.
Hum Mol Genet ; 21(5): 1062-77, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22095690

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder characterized by axonopathy and demyelination in the central nervous system and adrenal insufficiency. Main X-ALD phenotypes are: (i) an adult adrenomyeloneuropathy (AMN) with axonopathy in spinal cords, (ii) cerebral AMN with brain demyelination (cAMN) and (iii) a childhood variant, cALD, characterized by severe cerebral demyelination. Loss of function of the ABCD1 peroxisomal fatty acid transporter and subsequent accumulation of very-long-chain fatty acids (VLCFAs) are the common culprits to all forms of X-ALD, an aberrant microglial activation accounts for the cerebral forms, whereas inflammation allegedly plays no role in AMN. How VLCFA accumulation leads to neurodegeneration and what factors account for the dissimilar clinical outcomes and prognosis of X-ALD variants remain elusive. To gain insights into these questions, we undertook a transcriptomic approach followed by a functional-enrichment analysis in spinal cords of the animal model of AMN, the Abcd1(-) null mice, and in normal-appearing white matter of cAMN and cALD patients. We report that the mouse model shares with cAMN and cALD a common signature comprising dysregulation of oxidative phosphorylation, adipocytokine and insulin signaling pathways, and protein synthesis. Functional validation by quantitative polymerase chain reaction, western blots and assays in spinal cord organotypic cultures confirmed the interplay of these pathways through IkB kinase, being VLCFA in excess a causal, upstream trigger promoting the altered signature. We conclude that X-ALD is, in all its variants, a metabolic/inflammatory syndrome, which may offer new targets in X-ALD therapeutics.


Assuntos
Adipocinas/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Fosforilação Oxidativa , Medula Espinal/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adiponectina/metabolismo , Adulto , Animais , Vias Biossintéticas , Criança , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Quinase I-kappa B/metabolismo , Insulina/metabolismo , Resistência à Insulina , Leptina/metabolismo , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Transcriptoma
10.
Brain ; 136(Pt 8): 2432-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794606

RESUMO

X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.


Assuntos
Adrenoleucodistrofia/tratamento farmacológico , Axônios/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Degeneração Neural/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Glutationa Redutase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Pioglitazona , Tiazolidinedionas/farmacologia , Resultado do Tratamento
11.
Biochim Biophys Acta ; 1822(9): 1475-88, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22353463

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited neurodegenerative disorder expressed as four disease variants characterized by adrenal insufficiency and graded damage in the nervous system. X-ALD is caused by a loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long chain fatty acids (VLCFA) in the organs and plasma, which have potentially toxic effects in CNS and adrenal glands. We have recently shown that treatment with a combination of antioxidants containing α-tocopherol, N-acetyl-cysteine and α-lipoic acid reversed oxidative damage and energetic failure, together with the axonal degeneration and locomotor impairment displayed by Abcd1 null mice, the animal model of X-ALD. This is the first direct demonstration that oxidative stress, which is a hallmark not only of X-ALD, but also of other neurodegenerative processes, such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), contributes to axonal damage. The purpose of this review is, first, to discuss the molecular and cellular underpinnings of VLCFA-induced oxidative stress, and how it interacts with energy metabolism and/or inflammation to generate a complex syndrome wherein multiple factors are contributing. Particular attention will be paid to the dysregulation of redox homeostasis by the interplay between peroxisomes and mitochondria. Second, we will extend this analysis to the aforementioned neurodegenerative diseases with the aim of defining differences as well as the existence of a core pathogenic mechanism that would justify the exchange of therapeutic opportunities among these pathologies.


Assuntos
Adrenoleucodistrofia/metabolismo , Axônios/metabolismo , Doenças Neurodegenerativas/metabolismo , Estresse Oxidativo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/patologia , Animais , Antioxidantes/uso terapêutico , Axônios/patologia , Membrana Celular/metabolismo , Humanos , Inflamação/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/patologia , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Biol Chem ; 394(5): 621-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23492556

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a severe inherited neurodegenerative disorder characterized by adrenal insufficiency and graded damage in the nervous system. Loss of function of the peroxisomal ABCD1 fatty-acid transporter, resulting in the accumulation of very long-chain fatty acids in organs and plasma, is the genetic cause. Treatment with a combination of antioxidants halts the axonal degeneration and locomotor impairment displayed by the animal model of X-ALD, and is a proof of concept that oxidative stress contributes to axonal damage. New evidence demonstrates that metabolic failure and the opening of the mitochondrial permeability transition pore orchestrated by cyclophilin D underlies oxidative stress-induced axonal degeneration. Thus, cyclophilin D could serve as a therapeutic target for the treatment of X-ALD and cyclophilin D-dependent neurodegenerative and non-neurodegenerative diseases.


Assuntos
Adrenoleucodistrofia/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ciclofilinas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Ensaios Clínicos Fase II como Assunto , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Peptidil-Prolil Isomerase F , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/genética , Estresse Oxidativo/efeitos dos fármacos
13.
Essays Biochem ; 67(1): 3-16, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36350053

RESUMO

Astrocytes generate ATP through glycolysis and mitochondrion respiration, using glucose, lactate, fatty acids, amino acids, and ketone bodies as metabolic fuels. Astrocytic mitochondria also participate in neuronal redox homeostasis and neurotransmitter recycling. In this essay, we aim to integrate the multifaceted evidence about astrocyte bioenergetics at the cellular and systems levels, with a focus on mitochondrial oxidation. At the cellular level, the use of fatty acid ß-oxidation and the existence of molecular switches for the selection of metabolic mode and fuels are examined. At the systems level, we discuss energy audits of astrocytes and how astrocytic Ca2+ signaling might contribute to the higher performance and lower energy consumption of the brain as compared to engineered circuits. We finish by examining the neural-circuit dysregulation and behavior impairment associated with alterations of astrocytic mitochondria. We conclude that astrocytes may contribute to brain energy efficiency by coupling energy, redox, and computational homeostasis in neural circuits.


Assuntos
Astrócitos , Metabolismo Energético , Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Encéfalo/metabolismo , Ácido Láctico
14.
ASN Neuro ; 15: 17590914231197523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647500

RESUMO

Scientific progress requires the relentless correction of errors and refinement of hypotheses. Clarity of terminology is essential for clarity of thought and proper experimental interrogation of nature. Therefore, the application of the same scientific term to different and even conflicting phenomena and concepts is not useful and must be corrected. Such abuse of terminology has happened and is still increasing in the case of "neuroinflammation," a term that until the 1990s meant classical inflammation affecting the central nervous system (CNS) and thereon was progressively used to mostly denote microglia activation. The resulting confusion is very wasteful and detrimental not only for scientists but also for patients, given the numerous failed clinical trials in acute and chronic CNS diseases over the last decade with "anti-inflammatory" drugs. Despite this failure, reassessments of the "neuroinflammation" concept are rare, especially considering the number of articles still using the term. This undesirable situation motivates this article. We review the origins and evolution of the term "neuroinflammation," discuss the unique tissue defense and repair strategies in the CNS, define CNS immunity, and emphasize the notion of gliopathies to help readdress, if not bury, the term "neuroinflammation" as it stands in the way of scientific progress.


Assuntos
Doenças do Sistema Nervoso Central , Microglia , Humanos , Doenças Neuroinflamatórias , Sistema Nervoso Central , Inflamação/tratamento farmacológico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Anti-Inflamatórios
15.
Res Sq ; 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163040

RESUMO

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP mice. The power but not the frequency of astrocytic calcium transients was reduced in APP mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.

16.
Sci Rep ; 13(1): 13075, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37567942

RESUMO

Patients with Alzheimer's disease (AD) exhibit non-rapid eye movement (NREM) sleep disturbances in addition to memory deficits. Disruption of NREM slow waves occurs early in the disease progression and is recapitulated in transgenic mouse models of beta-amyloidosis. However, the mechanisms underlying slow-wave disruptions remain unknown. Because astrocytes contribute to slow-wave activity, we used multiphoton microscopy and optogenetics to investigate whether they contribute to slow-wave disruptions in APP/PS1 mice. The power but not the frequency of astrocytic calcium transients was reduced in APP/PS1 mice compared to nontransgenic controls. Optogenetic activation of astrocytes at the endogenous frequency of slow waves restored slow-wave power, reduced amyloid deposition, prevented neuronal calcium elevations, and improved memory performance. Our findings revealed malfunction of the astrocytic network driving slow-wave disruptions. Thus, targeting astrocytes to restore circuit activity underlying sleep and memory disruptions in AD could ameliorate disease progression.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/patologia , Optogenética/efeitos adversos , Cálcio , Astrócitos/metabolismo , Camundongos Transgênicos , Cálcio da Dieta , Modelos Animais de Doenças , Encéfalo/metabolismo , Progressão da Doença , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética
17.
Glia ; 60(9): 1330-44, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22593004

RESUMO

In neurons, it is well established that CREB contributes to learning and memory by orchestrating the translation of experience into the activity-dependent (i.e., driven by neurotransmitters) transcription of plasticity-related genes. The activity-dependent CREB-triggered transcription requires the concerted action of cyclic AMP/protein kinase A and Ca(2+) /calcineurin via the CREB-regulated transcription co-activator (CRTC). It is not known, however, whether a comparable molecular sequence occurs in astrocytes, despite the unquestionable contribution of these cells to brain plasticity. Here we sought to determine whether and how ATP and noradrenaline cause CREB-dependent transcription in rat cortical astrocyte cultures. Both transmitters induced CREB phosphorylation (Western Blots), CREB-dependent transcription (CRE-luciferase reporter assays), and the transcription of Bdnf, a canonical regulator of synaptic plasticity (quantitative RT-PCR). We indentified a Ca(2+) and diacylglycerol-independent protein kinase C at the uppermost position of the cascade leading to CREB-dependent transcription. Notably, CREB-dependent transcription was partially dependent on ERK1/2 and CRTC, but independent of cyclic AMP/protein kinase A or Ca(2+) /calcineurin. We conclude that ATP and noradrenaline activate CREB-dependent transcription in cortical astrocytes via an atypical protein kinase C. It is of relevance that the signaling involved be starkly different to the one described in neurons since there is no convergence of Ca(2+) and cyclic AMP-dependent pathways on CRTC, which, moreover, exerts a modulatory rather than a central role. Our data thus point to the existence of an alternative, non-neuronal, glia-based role of CREB in plasticity.


Assuntos
Trifosfato de Adenosina/farmacologia , Astrócitos/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Norepinefrina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia , Transcrição Gênica/efeitos dos fármacos
18.
Neurosignals ; 20(2): 86-102, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22189091

RESUMO

While the role of cytokines in causing pro- and anti-inflammatory cascades in the brain and that of chemokines in promoting chemotaxis is well recognized, the immunomodulatory actions of neurotrophins released during brain injury remains largely undetermined. This knowledge gap affects basic fibroblast growth factor (FGF2), which in the brain is mainly produced by astrocytes and characteristically upregulated in reactive astrocytes. The goal of this study was to characterize the inflammatory actions of FGF2 in astrocytes using primary cultures. We report that FGF2 induced the upregulation of monocyte chemoattractant protein (CCL2) and cyclo-oxygenase type 2 (COX2), and the inhibition of lipopolysaccharide-elicited ICAM1 upregulation. The effects of FGF2 were: (i) dependent on gene transcription as revealed by the concomitant regulation of CCL2 or ICAM1 mRNAs; (ii) mediated by the FGF2 receptor type 2; (iii) dependent on ERK, JNK and FAK, and (iv) NF-κB-independent. FGF2 also caused accelerated wound closure dependent on CCL2, COX2, ERK, JNK and FAK in a scratch assay. We conclude that the signaling network triggered by FGF2 in astrocytes converged into accelerating directed motion. It follows that astrocyte migration to injury sites may be a key factor in the repair mechanisms orchestrated by FGF2.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL2/metabolismo , Ciclo-Oxigenase 2/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL2/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima
19.
Neuron ; 110(21): 3458-3483, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36327895

RESUMO

Microglial research has advanced considerably in recent decades yet has been constrained by a rolling series of dichotomies such as "resting versus activated" and "M1 versus M2." This dualistic classification of good or bad microglia is inconsistent with the wide repertoire of microglial states and functions in development, plasticity, aging, and diseases that were elucidated in recent years. New designations continuously arising in an attempt to describe the different microglial states, notably defined using transcriptomics and proteomics, may easily lead to a misleading, although unintentional, coupling of categories and functions. To address these issues, we assembled a group of multidisciplinary experts to discuss our current understanding of microglial states as a dynamic concept and the importance of addressing microglial function. Here, we provide a conceptual framework and recommendations on the use of microglial nomenclature for researchers, reviewers, and editors, which will serve as the foundations for a future white paper.


Assuntos
Microglia
20.
Nat Neurosci ; 24(3): 312-325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33589835

RESUMO

Reactive astrocytes are astrocytes undergoing morphological, molecular, and functional remodeling in response to injury, disease, or infection of the CNS. Although this remodeling was first described over a century ago, uncertainties and controversies remain regarding the contribution of reactive astrocytes to CNS diseases, repair, and aging. It is also unclear whether fixed categories of reactive astrocytes exist and, if so, how to identify them. We point out the shortcomings of binary divisions of reactive astrocytes into good-vs-bad, neurotoxic-vs-neuroprotective or A1-vs-A2. We advocate, instead, that research on reactive astrocytes include assessment of multiple molecular and functional parameters-preferably in vivo-plus multivariate statistics and determination of impact on pathological hallmarks in relevant models. These guidelines may spur the discovery of astrocyte-based biomarkers as well as astrocyte-targeting therapies that abrogate detrimental actions of reactive astrocytes, potentiate their neuro- and glioprotective actions, and restore or augment their homeostatic, modulatory, and defensive functions.


Assuntos
Envelhecimento/patologia , Astrócitos/patologia , Encéfalo/patologia , Medula Espinal/patologia , Animais , Encefalopatias/patologia , Lesões Encefálicas/patologia , Humanos , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa