Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 380(2217): 20200305, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34974732

RESUMO

Numerous experimental data on the rapid solidification of eutectic systems exhibit the formation of metastable solid phases with the initial (nominal) chemical composition. This fact is explained by the suppression of eutectic decomposition due to diffusionless (chemically partitionless) solidification beginning at a high but finite growth velocity of crystals. In the present work, a model is suggested for the diffusionless growth to analyse the atomic diffusion in the rod eutectic couples growing into supercooled liquid. A simplified calculating method for the equation related to the Bessel function in the solution of the growth of rod eutectics is obtained. This method can also be used in the calculation of other rod eutectic growth models. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 380(2217): 20200327, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34974731

RESUMO

The thermodynamic description of the fcc phase in the Al-Cu system has been revised, allowing for the prediction of metastable fcc/liquid phase equilibria to undercoolings of ΔT = 421 K below the eutectic temperature. Hypoeutectic Al-Cu alloys that are prone to pronounced microsegregation were solidified containerlessly in electromagnetic levitation. Solidus and liquidus concentrations were experimentally determined from highly undercooled samples employing energy-dispersive X-ray analysis. Solid concentrations at a rapidly propagating solid/liquid interface were additionally calculated using a sharp interface model that considers all undercoolings and is based on solvability theory. Modelling results (front velocity versus undercooling) were also corroborated by in situ observation with a high-speed camera. A newly established thermodynamic description of the fcc phase in Al-Cu is compatible with existing CALPHAD-type databases. Inconsistencies of previous descriptions such as a miscibility gap between Al-fcc and Cu-fcc on the Al-rich side, an unrealistic curvature of the solidus line in the same composition range or an azeotropic point near the melting point of Cu, are amended in the new description. The procedure to establish the description of phase equilibria at high undercoolings can be transferred to other alloy systems and is of a general nature. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.

3.
Philos Trans A Math Phys Eng Sci ; 379(2205): 20200325, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34275358

RESUMO

This review article summarizes the main outcomes following from recently developed theories of stable dendritic growth in undercooled one-component and binary melts. The nonlinear heat and mass transfer mechanisms that control the crystal growth process are connected with hydrodynamic flows (forced and natural convection), as well as with the non-local diffusion transport of dissolved impurities in the undercooled liquid phase. The main conclusions following from stability analysis, solvability and selection theories are presented. The sharp interface model and stability criteria for various crystallization conditions and crystalline symmetries met in actual practice are formulated and discussed. The review is also focused on the determination of the main process parameters-the tip velocity and diameter of dendritic crystals as functions of the melt undercooling, which define the structural states and transitions in materials science (e.g. monocrystalline-polycrystalline structures). Selection criteria of stable dendritic growth mode for conductive and convective heat and mass fluxes at the crystal surface are stitched together into a single criterion valid for an arbitrary undercooling. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2205): 20200320, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34275355

RESUMO

The results of molecular dynamics (MD) simulations of the crystallization process in one-component materials and solid solution alloys reveal a complex temperature dependence of the velocity of the crystal-liquid interface featuring an increase up to a maximum at 10-30% undercooling below the equilibrium melting temperature followed by a gradual decrease of the velocity at deeper levels of undercooling. At the qualitative level, such non-monotonous behaviour of the crystallization front velocity is consistent with the diffusion-controlled crystallization process described by the Wilson-Frenkel model, where the almost linear increase of the interface velocity in the vicinity of melting temperature is defined by the growth of the thermodynamic driving force for the phase transformation, while the decrease in atomic mobility with further increase of the undercooling drives the velocity through the maximum and into a gradual decrease at lower temperatures. At the quantitative level, however, the diffusional model fails to describe the results of MD simulations in the whole range of temperatures with a single set of parameters for some of the model materials. The limited ability of the existing theoretical models to adequately describe the MD results is illustrated in the present work for two materials, chromium and silicon. It is also demonstrated that the MD results can be well described by the solution following from the hodograph equation, previously found from the kinetic phase-field model (kinetic PFM) in the sharp interface limit. The ability of the hodograph equation to describe the predictions of MD simulation in the whole range of temperatures is related to the introduction of slow (phase field) and fast (gradient flow) variables into the original kinetic PFM from which the hodograph equation is obtained. The slow phase-field variable is responsible for the description of data at small undercoolings and the fast gradient flow variable accounts for local non-equilibrium effects at high undercoolings. The introduction of these two types of variables makes the solution of the hodograph equation sufficiently flexible for a reliable description of all nonlinearities of the kinetic curves predicted in MD simulations of Cr and Si. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.

5.
Philos Trans A Math Phys Eng Sci ; 379(2205): 20200326, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34275356

RESUMO

This article is devoted to the study of the tip shape of dendritic crystals grown from a supercooled liquid. The recently developed theory (Alexandrov & Galenko 2020 Phil. Trans. R. Soc. A 378, 20190243. (doi:10.1098/rsta.2019.0243)), which defines the shape function of dendrites, was tested against computational simulations and experimental data. For a detailed comparison, we performed calculations using two computational methods (phase-field and enthalpy-based methods), and also made a comparison with experimental data from various research groups. As a result, it is shown that the recently found shape function describes the tip region of dendritic crystals (at the crystal vertex and some distance from it) well. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.

6.
Philos Trans A Math Phys Eng Sci ; 378(2171): 20190243, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32279631

RESUMO

The present article is focused on the shapes of dendritic tips occurring in undercooled binary systems in the absence of convection. A circular/globular shape appears in limiting cases of small and large Péclet numbers. A parabolic/paraboloidal shape describes the tip regions of dendrites whereas a fractional power law defines a shape behind their tips in the case of low/moderate Péclet number. The parabolic/paraboloidal and fractional power law shapes are sewed together in the present work to describe the dendritic shape in a broader region adjacent to the dendritic tip. Such a generalized law is in good agreement with the parabolic/paraboloidal and fractional power laws of dendritic shapes. A special case of the angled dendrite is considered and analysed in addition. The obtained results are compared with previous experimental data and the results of numerical simulations on dendritic growth. This article is part of the theme issue 'Patterns in soft and biological matters'.

7.
Philos Trans A Math Phys Eng Sci ; 378(2171): 20190540, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32279632

RESUMO

The thin interface limit of the phase-field model is extended to include transport via melt convection. A double-sided model (equal diffusivity in liquid and solid phases) is considered for the present analysis. For the coupling between phase-field and Navier-Stokes equations, two commonly used schemes are investigated using a matched asymptotic analysis: (i) variable viscosity and (ii) drag force model. While for the variable viscosity model, the existence of a thin interface limit can be shown up to the second order in the expansion parameter, difficulties arise in satisfying no-slip boundary condition at this order for the drag force model. Nevertheless, detailed numerical simulations in two dimensions show practically no difference in dendritic growth profiles in the presence of forced melt flow obtained for the two coupling schemes. This suggests that both approaches can be used for the purpose of numerical simulations. Simulation results are also compared to analytic theory, showing excellent agreement for weak flow. Deviations at higher fluid velocities are discussed in terms of the underlying theoretical assumptions. This article is part of the theme issue 'Patterns in soft and biological matters'.

8.
Philos Trans A Math Phys Eng Sci ; 377(2143): 20180204, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-30827216

RESUMO

Results of a study on microstructural evolution of eutectic Sn-57 wt.% Bi processed with cooling rates of 10-2, 1 K s-1 and approximately 105 K s-1 are presented. In order to distinguish different mechanisms of microstructure formation, a comparison with microstructures of different hypoeutectic alloys with compositions down to below the maximum solubility of Bi in Sn-Bi is undertaken. It is found that at the cooling rates of 10-2 and 1 K s-1, coupled eutectic growth occurs, leading to lamellar structures with different length scales. At the rapid quenching rates of approximately 105 K s-1, structure formation in the eutectic alloy is qualitatively different. Partitionless solidification resulting in a supersaturated solid solution with the initial composition is observed in both eutectic and hypoeutectic alloys. It is shown that the observed microstructure of the rapidly solidified alloys forms by the decomposition of the supersaturated solid solution. This article is part of the theme issue 'Heterogeneous materials: metastable and non-ergodic internal structures'.

9.
Philos Trans A Math Phys Eng Sci ; 376(2113)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29311212

RESUMO

Motivated by important applications in materials science and geophysics, we consider the steady-state growth of anisotropic needle-like dendrites in undercooled binary mixtures with a forced convective flow. We analyse the stable mode of dendritic evolution in the case of small anisotropies of growth kinetics and surface energy for arbitrary Péclet numbers and n-fold symmetry of dendritic crystals. On the basis of solvability and stability theories, we formulate a selection criterion giving a stable combination between dendrite tip diameter and tip velocity. A set of nonlinear equations consisting of the solvability criterion and undercooling balance is solved analytically for the tip velocity V and tip diameter ρ of dendrites with n-fold symmetry in the absence of convective flow. The case of convective heat and mass transfer mechanisms in a binary mixture occurring as a result of intensive flows in the liquid phase is detailed. A selection criterion that describes such solidification conditions is derived. The theory under consideration comprises previously considered theoretical approaches and results as limiting cases. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

10.
Philos Trans A Math Phys Eng Sci ; 376(2113)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29311215

RESUMO

The boundary integral method for propagating solid/liquid interfaces is detailed with allowance for the thermo-solutal Stefan-type models. Two types of mass transfer mechanisms corresponding to the local equilibrium (parabolic-type equation) and local non-equilibrium (hyperbolic-type equation) solidification conditions are considered. A unified integro-differential equation for the curved interface is derived. This equation contains the steady-state conditions of solidification as a special case. The boundary integral analysis demonstrates how to derive the quasi-stationary Ivantsov and Horvay-Cahn solutions that, respectively, define the paraboloidal and elliptical crystal shapes. In the limit of highest Péclet numbers, these quasi-stationary solutions describe the shape of the area around the dendritic tip in the form of a smooth sphere in the isotropic case and a deformed sphere along the directions of anisotropy strength in the anisotropic case. A thermo-solutal selection criterion of the quasi-stationary growth mode of dendrites which includes arbitrary Péclet numbers is obtained. To demonstrate the selection of patterns, computational modelling of the quasi-stationary growth of crystals in a binary mixture is carried out. The modelling makes it possible to obtain selected structures in the form of dendritic, fractal or planar crystals.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

11.
Phys Chem Chem Phys ; 17(29): 19149-61, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26135361

RESUMO

A thermo-diffusional problem of a free dendrite growing in a binary mixture is considered analytically. Effects of the anisotropy and convective flow on the stable mode of the dendrite with four-fold crystal symmetry are studied. Special analysis is given for the parabolic dendrite growing at arbitrary Péclet numbers and with small anisotropy of surface energy and atomic kinetics. The stable growth mode is analyzed through the solvability condition giving the stability criterion for the dendrite tip velocity V and dendrite tip diameter ρ as a function of growth Péclet number, Pg, flow Péclet number, Pf, and Reynolds number, Re. Using the obtained criterion of stability, a complete sequence of transitions in growth regimes (namely, from solute diffusion-limited to thermally controlled and further to kinetically-limited regimes) of the anisotropic dendrite is derived and revealed. Limiting cases to known criteria for small and high growth Péclet numbers of the solidifying system with and without convective fluid flow are found. Two-dimensional solidification regimes and scalings obtained are discussed for their extension to three-dimensional dendritic growth.

12.
J Phys Condens Matter ; 34(49)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36228604

RESUMO

A revised study of the growth and melting of crystals in congruently melting Al50Ni50alloy is carried out by molecular dynamics (MDs) and phase field (PF) methods. An embedded atom method (EAM) potential of Purja Pun and Mishin (2009Phil. Mag.89 3245) is used to estimate the material's properties (density, enthalpy, and self-diffusion) of the B2 crystalline and liquid phases of the alloy. Using the same EAM potential, the melting temperature, density, and diffusion coefficient become well comparable with experimental data in contrast with previous works where other potentials were used. In the new revision of MD data, the kinetics of melting and solidification are quantitatively evaluated by the 'crystal-liquid interface velocity-undercooling' relationship exhibiting the well-known bell-shaped kinetic curve. The traveling wave solution of the kinetic PF model as well as the hodograph equation of the solid-liquid interface quantitatively describe the 'velocity-undercooling' relationship obtained in the MD simulation in the whole range of investigated temperatures for melting and growth of Al50Ni50crystals.

13.
Artigo em Inglês | MEDLINE | ID: mdl-23848693

RESUMO

A free dendrite growth under forced fluid flow is analyzed for solidification of a nonisothermal binary system. Using an approach to dendrite growth developed by Bouissou and Pelcé [Phys. Rev. A 40, 6673 (1989)], the analysis is presented for the parabolic dendrite interface with small anisotropy of surface energy growing at arbitrary Péclet numbers. The stable growth mode is obtained from the solvability condition giving the stability criterion for the dendrite tip velocity V and dendrite tip radius ρ as a function of the growth Péclet number, flow Péclet number, and Reynolds number. In limiting cases, the obtained stability criterion presents known criteria for small and high growth Péclet numbers of the solidifying system with and without convective fluid flow.


Assuntos
Cristalização/métodos , Dendrímeros/síntese química , Modelos Químicos , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestrutura , Simulação por Computador , Convecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa