Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(5): 953-956, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840757

RESUMO

KEY MESSAGE: T-DNA and CRISPR/Cas9-mediated knockout of polyester synthase-like genes delays flowering time in Arabidopsis thaliana and Medicago sativa (alfalfa). Thus, we here present the first report of edited alfalfa with delayed flowering.


Assuntos
Arabidopsis , Medicago sativa , Medicago sativa/genética , Sistemas CRISPR-Cas/genética , Flores/genética , Arabidopsis/genética
2.
Microb Ecol ; 83(2): 501-505, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33966095

RESUMO

We have previously shown the extensive loss of genes during the domestication of alfalfa rhizobia and the high nitrous oxide emission associated with the extreme genomic instability of commercial inoculants. In the present note, we describe the molecular mechanism involved in the evolution of alfalfa rhizobia. Genomic analysis showed that most of the gene losses in inoculants are due to large genomic deletions rather than to small deletions or point mutations, a fact consistent with recurrent DNA double-strand breaks (DSBs) at numerous locations throughout the microbial genome. Genetic analysis showed that the loss of the NO-detoxifying enzyme HmpA in inoculants results in growth inhibition and high DSB levels under nitrosative stress, and large genomic deletions in planta but not in the soil. Therefore, besides its known function in the effective establishment of the symbiosis, HmpA can play a critical role in the preservation of the genomic integrity of alfalfa rhizobia under host-derived nitrosative stress.


Assuntos
Rhizobium , Genômica , Hempa , Medicago sativa , Rhizobium/genética , Simbiose
3.
FEMS Microbiol Lett ; 367(23)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33242092

RESUMO

Nitrogen is a most important nutrient resource for Escherichia coli and other bacteria that harbor the glnKamtB operon, a high-affinity ammonium uptake system highly interconnected with cellular metabolism. Although this system confers an advantage to bacteria when growing under nitrogen-limiting conditions, little is known about the impact of these genes on microbial fitness under nutrient-rich conditions. Here, the genetically tractable E. coli BW25113 strain and its glnKamtB-null mutant (JW0441) were used to analyze the impact of GlnK-AmtB on growth rates and oxidative stress tolerance. Strain JW0441 showed a shorter initial lag phase, higher growth rate, higher citrate synthase activity, higher oxidative stress tolerance and lower expression of serA than strain BW25113 under nutrient-rich conditions, suggesting a fitness cost to increase metabolic plasticity associated with serine metabolism. The overexpression of serA in strain JW0441 resulted in a decreased growth rate and stress tolerance in nutrient-rich conditions similar to that of strain BW25113, suggesting that the negative influence on bacterial fitness imposed by GlnK-AmtB can be traced to the control of serine biosynthesis. Finally, we discuss the potential applications of glnKamtB mutants in bioproduction processes.


Assuntos
Proteínas de Transporte de Cátions/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleotidiltransferases/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Serina/biossíntese , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/metabolismo , Microbiologia Industrial , Mutação , Nucleotidiltransferases/metabolismo , Óperon/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Serina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa