Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neuropathol Appl Neurobiol ; 48(1): e12747, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34237158

RESUMO

AIMS: Mitochondrial dysfunction and inflammation are at the core of axonal degeneration in several multifactorial neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. The transcriptional coregulator RIP140/NRIP1 (receptor-interacting protein 140) modulates these functions in liver and adipose tissue, but its role in the nervous system remains unexplored. Here, we investigated the impact of RIP140 in the Abcd1- mouse model of X-linked adrenoleukodystrophy (X-ALD), a genetic model of chronic axonopathy involving the convergence of redox imbalance, bioenergetic failure, and chronic inflammation. METHODS AND RESULTS: We provide evidence that RIP140 is modulated through a redox-dependent mechanism driven by very long-chain fatty acids (VLCFAs), the levels of which are increased in X-ALD. Genetic inactivation of RIP140 prevented mitochondrial depletion and dysfunction, bioenergetic failure, inflammatory dysregulation, axonal degeneration and associated locomotor disabilities in vivo in X-ALD mouse models. CONCLUSIONS: Together, these findings show that aberrant overactivation of RIP140 promotes neurodegeneration in X-ALD, underscoring its potential as a therapeutic target for X-ALD and other neurodegenerative disorders that present with metabolic and inflammatory dyshomeostasis.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/uso terapêutico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Modelos Animais de Doenças , Homeostase , Camundongos , Mitocôndrias/metabolismo , Proteína 1 de Interação com Receptor Nuclear
2.
J Neurosci ; 38(3): 679-690, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29217688

RESUMO

The MAPK/ERK pathway has a critical role in PNS development. It is required for Schwann cell (SC) differentiation and myelination; sustained embryonic MAPK/ERK activation in SCs enhances myelin growth overcoming signals that normally end myelination. Excess activation of this pathway can be maladaptive as in adulthood acute strong activation of MAPK/ERK has been shown to cause SC dedifferentiation and demyelination. We used a mouse model (including male and female animals) in which the gain-of-function MEK1DD allele produces sustained MAPK/ERK activation in adult SCs, and we determined the impact of such activation on nerve repair. In the uninjured nerve, MAPK/ERK activation neither impaired myelin nor reactivated myelination. However, in the injured nerve it was detrimental and resulted in delayed repair and functional recovery. In the early phase of injury, the rate of myelin clearance was faster. Four weeks following injury, when nerve repair is normally advanced, myelinated axons of MEK1DD mutants demonstrated higher rates of myelin decompaction, a reduced number of Cajal bands. and decreased internodal length. We noted the presence of abnormal Remak bundles with long SCs processes and reduced numbers of C-fibers/Remak bundle. Both the total number of regenerating axons and the intraepidermal nerve fiber density in the skin were reduced. Sustained activation of MAPK/ERK in adult SCs is therefore deleterious to successful nerve repair, emphasizing the differences in the signaling processes coordinating nerve development and repair. Our results also underline the key role of SCs in axon regeneration and successful target reinnervation.SIGNIFICANCE STATEMENT The MAPK/ERK pathway promotes developmental myelination and its sustained activation in SCs induced continuous myelin growth, compensating for the absence of essential myelination signals. However, the strength of activation is fundamental because acute strong induction of MAPK/ERK in adulthood induces demyelination. What has been unknown is the effect of a mild but sustained MAPK/ERK activation in SCs on nerve repair in adulthood. This promoted myelin clearance but led to abnormalities in nonmyelinating and myelinating SCs in the later phases of nerve repair, resulting in slowed axon regeneration, cutaneous reinnervation, and functional recovery. Our results emphasize the distinct role of the MAPK/ERK pathway in developmental myelination versus remyelination and the importance of signaling between SCs and axons for successful axon regeneration.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Animais , Ativação Enzimática/fisiologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Bainha de Mielina , Compressão Nervosa , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo
3.
Glia ; 67(10): 1990-2000, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31339187

RESUMO

Membrane metallo-endopeptidase (MME), also known as neprilysin (NEP), has been of interest for its role in neurodegeneration and pain due to its ability to degrade ß-amyloid and substance-P, respectively. In addition to its role in the central nervous system, MME has been reported to be expressed in the peripheral system, specifically in the inner and outer border of myelinating fibers, in the Schmidt-Lantermann cleft and in the paranodes. Recently, mutations of this gene have been associated with Charcot-Marie-Tooth Type 2 (CMT2). Peripheral nerve morphometry in mice lacking MME previously showed minor abnormalities in aged animals in comparison to CMT2 patients. We found that MME expression was dysregulated after nerve injury in a Neuregulin-1 dependent fashion. We therefore explored the hypothesis that MME may have a role in remyelination. In the naïve state in adulthood we did not find any impairment in myelination in MME KO mice. After nerve injury the morphological outcome in MME KO mice was indistinguishable from WT littermates in terms of axon regeneration and remyelination. We did not find any difference in functional motor recovery. There was a significant difference in sensory function, with MME KO mice starting to recover response to mechanical stimuli earlier than WT. The epidermal reinnnervation, however, was unchanged and this altered sensitivity may relate to its known function in cleaving the peptide substance-P, known to sensitise nociceptors. In conclusion, although MME expression is dysregulated after nerve injury in a NRG1-dependent manner this gene is dispensable for axon regeneration and remyelination after injury.


Assuntos
Bainha de Mielina/enzimologia , Neprilisina/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , Bainha de Mielina/patologia , Neprilisina/genética , Neuregulina-1/genética , Neuregulina-1/metabolismo , Nociceptividade/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/patologia
4.
Glia ; 67(6): 1036-1046, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30637799

RESUMO

We recently discovered a novel role for neuregulin-1 (Nrg1) signaling in mediating spontaneous regenerative processes and functional repair after spinal cord injury (SCI). We revealed that Nrg1 is the molecular signal responsible for spontaneous functional remyelination of dorsal column axons by peripheral nervous system (PNS)-like Schwann cells after SCI. Here, we investigate whether Nrg1/ErbB signaling controls the unusual transformation of centrally derived progenitor cells into these functional myelinating Schwann cells after SCI using a fate-mapping/lineage tracing approach. Specific ablation of Nrg1-ErbB receptors in central platelet-derived growth factor receptor alpha (PDGFRα)-derived lineage cells (using PDGFRαCreERT2/Tomato-red reporter mice crossed with ErbB3fl/fl/ErbB4fl/fl mice) led to a dramatic reduction in P0-positive remyelination in the dorsal columns following spinal contusion injury. Central myelination, assessed by Olig2 and proteolipid protein expression, was unchanged. Loss of ErbB signaling in PDGFRα lineage cells also significantly impacted the degree of spontaneous locomotor recovery after SCI, particularly in tests dependent on proprioception. These data have important implications, namely (a) cells from the PDGFRα-expressing progenitor lineage (which are presumably oligodendrocyte progenitor cells, OPCs) can differentiate into remyelinating PNS-like Schwann cells after traumatic SCI, (b) this process is controlled by ErbB tyrosine kinase signaling, and (c) this endogenous repair mechanism has significant consequences for functional recovery after SCI. Thus, ErbB tyrosine kinase receptor signaling directly controls the transformation of OPCs from the PDGFRα-expressing lineage into PNS-like functional remyelinating Schwann cells after SCI.


Assuntos
Receptores ErbB/deficiência , Células Precursoras de Oligodendrócitos/metabolismo , Recuperação de Função Fisiológica/fisiologia , Remielinização/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Receptores ErbB/genética , Camundongos , Camundongos Transgênicos , Células de Schwann/metabolismo , Traumatismos da Medula Espinal/patologia
5.
Hum Mol Genet ; 25(2): 291-307, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26604141

RESUMO

Zinc finger motifs are distributed amongst many eukaryotic protein families, directing nucleic acid-protein and protein-protein interactions. Zinc finger protein 106 (ZFP106) has previously been associated with roles in immune response, muscle differentiation, testes development and DNA damage, although little is known about its specific function. To further investigate the function of ZFP106, we performed an in-depth characterization of Zfp106 deficient mice (Zfp106(-/-)), and we report a novel role for ZFP106 in motor and sensory neuronal maintenance and survival. Zfp106(-/-) mice develop severe motor abnormalities, major deficits in muscle strength and histopathological changes in muscle. Intriguingly, despite being highly expressed throughout the central nervous system, Zfp106(-/-) mice undergo selective motor and sensory neuronal and axonal degeneration specific to the spinal cord and peripheral nervous system. Neurodegeneration does not occur during development of Zfp106(-/-) mice, suggesting that ZFP106 is likely required for the maintenance of mature peripheral motor and sensory neurons. Analysis of embryonic Zfp106(-/-) motor neurons revealed deficits in mitochondrial function, with an inhibition of Complex I within the mitochondrial electron transport chain. Our results highlight a vital role for ZFP106 in sensory and motor neuron maintenance and reveal a novel player in mitochondrial dysfunction and neurodegeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/genética , Células Receptoras Sensoriais/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Neurônios Motores/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Células Receptoras Sensoriais/fisiologia
6.
Brain ; 140(4): 898-913, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334857

RESUMO

See Saporta and Shy (doi:10.1093/awx048) for a scientific commentary on this article.Effective bidirectional signalling between axons and Schwann cells is essential for both the development and maintenance of peripheral nerve function. We have established conditions by which human induced pluripotent stem cell-derived sensory neurons can be cultured with rat Schwann cells, and have produced for the first time long-term and stable myelinating co-cultures with human neurons. These cultures contain the specialized domains formed by axonal interaction with myelinating Schwann cells, such as clustered voltage-gated sodium channels at the node of Ranvier and Shaker-type potassium channel (Kv1.2) at the juxtaparanode. Expression of type III neuregulin-1 (TIIINRG1) in induced pluripotent stem cell-derived sensory neurons strongly enhances myelination, while conversely pharmacological blockade of the NRG1-ErbB pathway prevents myelination, providing direct evidence for the ability of this pathway to promote the myelination of human sensory axons. The ß-secretase, BACE1 is a protease needed to generate active NRG1 from the full-length form. Due to the fact that it also cleaves amyloid precursor protein, BACE1 is a therapeutic target in Alzheimer's disease, however, consistent with its role in NRG1 processing we find that BACE1 inhibition significantly impairs myelination in our co-culture system. In order to exploit co-cultures to address other clinically relevant problems, they were exposed to anti-disialosyl ganglioside antibodies, including those derived from a patient with a sensory predominant, inflammatory neuropathy with mixed axonal and demyelinating electrophysiology. The co-cultures reveal that both mouse and human disialosyl antibodies target the nodal axolemma, induce acute axonal degeneration in the presence of complement, and impair myelination. The human, neuropathy-associated IgM antibody is also shown to induce complement-independent demyelination. Myelinating co-cultures using human induced pluripotent stem cell-derived sensory neurons thus provide insights into the cellular and molecular specialization of axoglial signalling, how pharmacological agents may promote or impede such signalling and the pathogenic effects of ganglioside antibodies.awx012media15372351982001.


Assuntos
Bainha de Mielina/fisiologia , Células-Tronco Neurais/fisiologia , Sistema Nervoso Periférico/fisiologia , Células Receptoras Sensoriais/fisiologia , Adulto , Animais , Anticorpos Anti-Idiotípicos/farmacologia , Diferenciação Celular/genética , Técnicas de Cocultura , Receptores ErbB/metabolismo , Feminino , Humanos , Imunoglobulina G , Camundongos , Células-Tronco Neurais/metabolismo , Neuregulina-1/metabolismo , Sistema Nervoso Periférico/citologia , Sistema Nervoso Periférico/efeitos dos fármacos , Ratos , Células de Schwann , Transdução Genética
7.
Brain ; 139(Pt 5): 1394-416, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26993800

RESUMO

Following traumatic spinal cord injury, acute demyelination of spinal axons is followed by a period of spontaneous remyelination. However, this endogenous repair response is suboptimal and may account for the persistently compromised function of surviving axons. Spontaneous remyelination is largely mediated by Schwann cells, where demyelinated central axons, particularly in the dorsal columns, become associated with peripheral myelin. The molecular control, functional role and origin of these central remyelinating Schwann cells is currently unknown. The growth factor neuregulin-1 (Nrg1, encoded by NRG1) is a key signalling factor controlling myelination in the peripheral nervous system, via signalling through ErbB tyrosine kinase receptors. Here we examined whether Nrg1 is required for Schwann cell-mediated remyelination of central dorsal column axons and whether Nrg1 ablation influences the degree of spontaneous remyelination and functional recovery following spinal cord injury. In contused adult mice with conditional ablation of Nrg1, we found an absence of Schwann cells within the spinal cord and profound demyelination of dorsal column axons. There was no compensatory increase in oligodendrocyte remyelination. Removal of peripheral input to the spinal cord and proliferation studies demonstrated that the majority of remyelinating Schwann cells originated within the injured spinal cord. We also examined the role of specific Nrg1 isoforms, using mutant mice in which only the immunoglobulin-containing isoforms of Nrg1 (types I and II) were conditionally ablated, leaving the type III Nrg1 intact. We found that the immunoglobulin Nrg1 isoforms were dispensable for Schwann cell-mediated remyelination of central axons after spinal cord injury. When functional effects were examined, both global Nrg1 and immunoglobulin-specific Nrg1 mutants demonstrated reduced spontaneous locomotor recovery compared to injured controls, although global Nrg1 mutants were more impaired in tests requiring co-ordination, balance and proprioception. Furthermore, electrophysiological assessments revealed severely impaired axonal conduction in the dorsal columns of global Nrg1 mutants (where Schwann cell-mediated remyelination is prevented), but not immunoglobulin-specific mutants (where Schwann cell-mediated remyelination remains intact), providing robust evidence that the profound demyelinating phenotype observed in the dorsal columns of Nrg1 mutant mice is related to conduction failure. Our data provide novel mechanistic insight into endogenous regenerative processes after spinal cord injury, demonstrating that Nrg1 signalling regulates central axon remyelination and functional repair and drives the trans-differentiation of central precursor cells into peripheral nervous system-like Schwann cells that remyelinate spinal axons after injury. Manipulation of the Nrg1 system could therefore be exploited to enhance spontaneous repair after spinal cord injury and other central nervous system disorders with a demyelinating pathology.media-1vid110.1093/brain/aww039_video_abstractaww039_video_abstract.


Assuntos
Bainha de Mielina/fisiologia , Neuregulina-1/fisiologia , Recuperação de Função Fisiológica/fisiologia , Células de Schwann/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Regeneração da Medula Espinal/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Proliferação de Células , Doenças Desmielinizantes/fisiopatologia , Feminino , Camundongos , Camundongos Mutantes , Destreza Motora/fisiologia , Bainha de Mielina/ultraestrutura , Condução Nervosa/fisiologia , Neuregulina-1/biossíntese , Neuregulina-1/genética , Isoformas de Proteínas/fisiologia , Ratos , Recuperação de Função Fisiológica/genética , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/genética
8.
Hum Mol Genet ; 21(5): 1062-77, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22095690

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder characterized by axonopathy and demyelination in the central nervous system and adrenal insufficiency. Main X-ALD phenotypes are: (i) an adult adrenomyeloneuropathy (AMN) with axonopathy in spinal cords, (ii) cerebral AMN with brain demyelination (cAMN) and (iii) a childhood variant, cALD, characterized by severe cerebral demyelination. Loss of function of the ABCD1 peroxisomal fatty acid transporter and subsequent accumulation of very-long-chain fatty acids (VLCFAs) are the common culprits to all forms of X-ALD, an aberrant microglial activation accounts for the cerebral forms, whereas inflammation allegedly plays no role in AMN. How VLCFA accumulation leads to neurodegeneration and what factors account for the dissimilar clinical outcomes and prognosis of X-ALD variants remain elusive. To gain insights into these questions, we undertook a transcriptomic approach followed by a functional-enrichment analysis in spinal cords of the animal model of AMN, the Abcd1(-) null mice, and in normal-appearing white matter of cAMN and cALD patients. We report that the mouse model shares with cAMN and cALD a common signature comprising dysregulation of oxidative phosphorylation, adipocytokine and insulin signaling pathways, and protein synthesis. Functional validation by quantitative polymerase chain reaction, western blots and assays in spinal cord organotypic cultures confirmed the interplay of these pathways through IkB kinase, being VLCFA in excess a causal, upstream trigger promoting the altered signature. We conclude that X-ALD is, in all its variants, a metabolic/inflammatory syndrome, which may offer new targets in X-ALD therapeutics.


Assuntos
Adipocinas/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Fosforilação Oxidativa , Medula Espinal/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adiponectina/metabolismo , Adulto , Animais , Vias Biossintéticas , Criança , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Quinase I-kappa B/metabolismo , Insulina/metabolismo , Resistência à Insulina , Leptina/metabolismo , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Transcriptoma
9.
Brain ; 136(Pt 8): 2432-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794606

RESUMO

X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.


Assuntos
Adrenoleucodistrofia/tratamento farmacológico , Axônios/efeitos dos fármacos , Hipoglicemiantes/uso terapêutico , Degeneração Neural/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Animais , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Glutationa Redutase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Pioglitazona , Tiazolidinedionas/farmacologia , Resultado do Tratamento
10.
Brain ; 136(Pt 7): 2279-97, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23801741

RESUMO

Neuregulin 1 acts as an axonal signal that regulates multiple aspects of Schwann cell development including the survival and migration of Schwann cell precursors, the ensheathment of axons and subsequent elaboration of the myelin sheath. To examine the role of this factor in remyelination and repair following nerve injury, we ablated neuregulin 1 in the adult nervous system using a tamoxifen inducible Cre recombinase transgenic mouse system. The loss of neuregulin 1 impaired remyelination after nerve crush, but did not affect Schwann cell proliferation associated with Wallerian degeneration or axon regeneration or the clearance of myelin debris by macrophages. Myelination changes were most marked at 10 days after injury but still apparent at 2 months post-crush. Transcriptional analysis demonstrated reduced expression of myelin-related genes during nerve repair in animals lacking neuregulin 1. We also studied repair over a prolonged time course in a more severe injury model, sciatic nerve transection and reanastamosis. In the neuregulin 1 mutant mice, remyelination was again impaired 2 months after nerve transection and reanastamosis. However, by 3 months post-injury axons lacking neuregulin 1 were effectively remyelinated and virtually indistinguishable from control. Neuregulin 1 signalling is therefore an important factor in nerve repair regulating the rate of remyelination and functional recovery at early phases following injury. In contrast to development, however, the determination of myelination fate following nerve injury is not dependent on axonal neuregulin 1 expression. In the early phase following injury, axonal neuregulin 1 therefore promotes nerve repair, but at late stages other signalling pathways appear to compensate.


Assuntos
Axônios/metabolismo , Regulação da Expressão Gênica/genética , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Neuregulina-1/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Análise de Variância , Animais , Axônios/patologia , Axônios/ultraestrutura , Bromodesoxiuridina/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Mutação/genética , Proteínas da Mielina/genética , Proteínas da Mielina/metabolismo , Bainha de Mielina/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/genética , Neuregulina-1/genética , Análise de Sequência com Séries de Oligonucleotídeos , Traumatismos dos Nervos Periféricos/patologia , Proteínas/genética , RNA não Traduzido , Recuperação de Função Fisiológica/genética , Reflexo/efeitos dos fármacos , Reflexo/genética , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia , Nervo Isquiático/ultraestrutura , Medula Espinal/metabolismo , Tamoxifeno/farmacologia , Fatores de Tempo
11.
Brain ; 135(Pt 12): 3584-98, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23250880

RESUMO

A common process associated with oxidative stress and severe mitochondrial impairment is the opening of the mitochondrial permeability transition pore, as described in many neurodegenerative diseases. Thus, inhibition of mitochondrial permeability transition pore opening represents a potential target for inhibiting mitochondrial-driven cell death. Among the mitochondrial permeability transition pore components, cyclophilin D is the most studied and has been found increased under pathological conditions. Here, we have used in vitro and in vivo models of X-linked adrenoleukodystrophy to investigate the relationship between the mitochondrial permeability transition pore opening and redox homeostasis. X-linked adrenoleukodystrophy is a neurodegenerative condition caused by loss of function of the peroxisomal ABCD1 transporter, in which oxidative stress plays a pivotal role. In this study, we provide evidence of impaired mitochondrial metabolism in a peroxisomal disease, as fibroblasts in patients with X-linked adrenoleukodystrophy cannot survive when forced to rely on mitochondrial energy production, i.e. on incubation in galactose. Oxidative stress induced under galactose conditions leads to mitochondrial damage in the form of mitochondrial inner membrane potential dissipation, ATP drop and necrotic cell death, together with increased levels of oxidative modifications in cyclophilin D protein. Moreover, we show increased expression levels of cyclophilin D in the affected zones of brains in patients with adrenomyeloneuropathy, in spinal cord of a mouse model of X-linked adrenoleukodystrophy (Abcd1-null mice) and in fibroblasts from patients with X-linked adrenoleukodystrophy. Notably, treatment with antioxidants rescues mitochondrial damage markers in fibroblasts from patients with X-linked adrenoleukodystrophy, including cyclophilin D oxidative modifications, and reverses cyclophilin D induction in vitro and in vivo. These findings provide mechanistic insight into the beneficial effects of antioxidants in neurodegenerative and non-neurodegenerative cyclophilin D-dependent disorders.


Assuntos
Adrenoleucodistrofia/patologia , Ciclofilinas/metabolismo , Fibroblastos/ultraestrutura , Potencial da Membrana Mitocondrial/fisiologia , Estresse Oxidativo/fisiologia , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/deficiência , Acetilcisteína/administração & dosagem , Trifosfato de Adenosina/metabolismo , Adrenoleucodistrofia/dietoterapia , Fatores Etários , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Butionina Sulfoximina/administração & dosagem , Morte Celular , Cromatina/patologia , Peptidil-Prolil Isomerase F , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Citometria de Fluxo , Galactose/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Glutationa/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Fármacos Neuroprotetores/administração & dosagem , Oligopeptídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ácido Tióctico/administração & dosagem , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Vitamina E/administração & dosagem
12.
Ann Neurol ; 70(1): 84-92, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21786300

RESUMO

OBJECTIVE: Axonal degeneration is a main contributor to disability in progressive neurodegenerative diseases in which oxidative stress is often identified as a pathogenic factor. We aim to demonstrate that antioxidants are able to improve axonal degeneration and locomotor deficits in a mouse model of X-adrenoleukodystrophy (X-ALD). METHODS: X-ALD is a lethal disease caused by loss of function of the ABCD1 peroxisomal transporter of very long chain fatty acids (VLCFA). The mouse model for X-ALD exhibits a late onset neurological phenotype with locomotor disability and axonal degeneration in spinal cord resembling the most common phenotype of the disease, adrenomyeloneuropathy (X-AMN). Recently, we identified oxidative damage as an early event in life, and the excess of VLCFA as a generator of radical oxygen species (ROS) and oxidative damage to proteins in X-ALD. RESULTS: Here, we prove the capability of the antioxidants N-acetyl-cysteine, α-lipoic acid, and α-tocopherol to scavenge VLCFA-dependent ROS generation in vitro. Furthermore, in a preclinical setting, the cocktail of the 3 compounds reversed: (1) oxidative stress and lesions to proteins, (2) immunohistological signs of axonal degeneration, and (3) locomotor impairment in bar cross and treadmill tests. INTERPRETATION: We have established a direct link between oxidative stress and axonal damage in a mouse model of neurodegenerative disease. This conceptual proof of oxidative stress as a major disease-driving factor in X-AMN warrants translation into clinical trials for X-AMN, and invites assessment of antioxidant strategies in axonopathies in which oxidative damage might be a contributing factor.


Assuntos
Adrenoleucodistrofia/metabolismo , Antioxidantes/uso terapêutico , Axônios/metabolismo , Modelos Animais de Doenças , Degeneração Neural/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/patologia , Animais , Antioxidantes/farmacologia , Axônios/efeitos dos fármacos , Axônios/patologia , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória
13.
Hum Mol Genet ; 17(12): 1762-73, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18344354

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is a fatal neurodegenerative disorder, characterized by progressive cerebral demyelination cerebral childhood adrenoleukodystrophy (CCALD) or spinal cord neurodegeneration (adrenomyeloneuropathy, AMN), adrenal insufficiency and accumulation of very long-chain fatty acids (VLCFA) in tissues. The disease is caused by mutations in the ABCD1 gene, which encodes a peroxisomal transporter that plays a role in the import of VLCFA or VLCFA-CoA into peroxisomes. The Abcd1 knockout mice develop a spinal cord disease that mimics AMN in adult patients, with late onset at 20 months of age. The mechanisms underlying cerebral demyelination or axonal degeneration in spinal cord are unknown. Here, we present evidence by gas chromatography/mass spectrometry that malonaldehyde-lysine, a consequence of lipoxidative damage to proteins, accumulates in the spinal cord of Abcd1 knockout mice as early as 3.5 months of age. At 12 months, Abcd1- mice accumulate additional proteins modified by oxidative damage arising from metal-catalyzed oxidation and glycoxidation/lipoxidation. While we show that VLCFA excess activates enzymatic antioxidant defenses at the protein expression levels, both in neural tissue, in ex vivo organotypic spinal cord slices from Abcd1- mice, and in human ALD fibroblasts, we also demonstrate that the loss of Abcd1 gene function hampers oxidative stress homeostasis. We find that the alpha-tocopherol analog Trolox is able to reverse oxidative lesions in vitro, thus providing therapeutic hope. These results pave the way for the identification of therapeutic targets that could reverse the deregulated response to oxidative stress in X-ALD.


Assuntos
Adrenoleucodistrofia/metabolismo , Oxirredução , Medula Espinal/metabolismo , Animais , Catalase/metabolismo , Quimiocina CCL22/genética , Quimiocina CCL22/metabolismo , Cromanos/farmacologia , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Lisina/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/enzimologia , Neurônios Motores/metabolismo , Estresse Oxidativo , Superóxido Dismutase
14.
J Cell Biol ; 218(7): 2370-2387, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201266

RESUMO

RalA and RalB are small GTPases that are involved in cell migration and membrane dynamics. We used transgenic mice in which one or both GTPases were genetically ablated to investigate the role of RalGTPases in the Schwann cell (SC) response to nerve injury and repair. RalGTPases were dispensable for SC function in the naive uninjured state. Ablation of both RalA and RalB (but not individually) in SCs resulted in impaired axon remyelination and target reinnervation following nerve injury, which resulted in slowed recovery of motor function. Ral GTPases were localized to the leading lamellipodia in SCs and were required for the formation and extension of both axial and radial processes of SCs. These effects were dependent on interaction with the exocyst complex and impacted on the rate of SC migration and myelination. Our results show that RalGTPases are required for efficient nerve repair by regulating SC process formation, migration, and myelination, therefore uncovering a novel role for these GTPases.


Assuntos
Regeneração Nervosa/genética , Traumatismos dos Nervos Periféricos/genética , Proteínas ral de Ligação ao GTP/genética , Animais , Axônios/metabolismo , Movimento Celular/genética , Humanos , Camundongos , Camundongos Transgênicos , Bainha de Mielina/genética , Traumatismos dos Nervos Periféricos/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
15.
FEBS Lett ; 582(20): 2979-84, 2008 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-18675812

RESUMO

Despite some caveats, G protein-coupled receptor oligomerization is a phenomenon that is becoming largely accepted. Within these oligomers, however, stoichiometry remains to be elucidated. Here, by using bimolecular fluorescence complementation, we visualized adenosine A(2A) receptor homodimers in living cells, showing no apparent difference in the subcellular distribution when compared to the YFP-labelled adenosine A(2A) receptor protomer. Interestingly, the combination of bimolecular fluorescence complementation and bioluminescence resonance energy transfer techniques allowed us to detect the occurrence of adenosine A(2A) receptors oligomers containing more than two protomers. These results provide new insights into the molecular composition of G protein-coupled receptor oligomers.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Receptor A2A de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Dimerização , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
Neuron ; 97(4): 806-822.e10, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29429934

RESUMO

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.


Assuntos
Gânglios Espinais/fisiopatologia , Imunoglobulina G/administração & dosagem , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Dor Nociceptiva/imunologia , Dor Nociceptiva/fisiopatologia , Células Receptoras Sensoriais/fisiologia , Animais , Células Cultivadas , Feminino , Humanos , Imunização Passiva , Masculino , Mecanotransdução Celular , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Células do Corno Posterior/fisiologia , Superfamília Shaker de Canais de Potássio/fisiologia
17.
Antioxid Redox Signal ; 15(8): 2095-107, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21453200

RESUMO

AIMS: Chronic metabolic impairment and oxidative stress are associated with the pathogenesis of axonal dysfunction in a growing number of neurodegenerative conditions. To investigate the intertwining of both noxious factors, we have chosen the mouse model of adrenoleukodystrophy (X-ALD), which exhibits axonal degeneration in spinal cords and motor disability. The disease is caused by loss of function of the ABCD1 transporter, involved in the import and degradation of very long-chain fatty acids (VLCFA) in peroxisomes. Oxidative stress due to VLCFA excess appears early in the neurodegenerative cascade. RESULTS: In this study, we demonstrate by redox proteomics that oxidative damage to proteins specifically affects five key enzymes of glycolysis and TCA (Tricarboxylic acid) cycle in spinal cords of Abcd1(-) mice and pyruvate kinase in human X-ALD fibroblasts. We also show that NADH and ATP levels are significantly diminished in these samples, together with decrease of pyruvate kinase activities and GSH levels, and increase of NADPH. INNOVATION: Treating Abcd1(-) mice with the antioxidants N-acetylcysteine and α-lipoic acid (LA) prevents protein oxidation; preserves NADH, NADPH, ATP, and GSH levels; and normalizes pyruvate kinase activity, which implies that oxidative stress provoked by VLCFA results in bioenergetic dysfunction, at a presymptomatic stage. CONCLUSION: Our results provide mechanistic insight into the beneficial effects of antioxidants and enhance the rationale for translation into clinical trials for X-adrenoleukodystrophy.


Assuntos
Adrenoleucodistrofia/metabolismo , Metabolismo Energético/fisiologia , Estresse Oxidativo/fisiologia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Adrenoleucodistrofia/genética , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Eletroforese em Gel Bidimensional , Metabolismo Energético/genética , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Estresse Oxidativo/genética , Proteômica , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa