Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Cell Physiol ; 234(5): 5524-5536, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30272821

RESUMO

Mutations in p53 are strongly associated with several highly malignant cancer phenotypes but its role in regulating energy metabolism has not been completely elucidated. The effect on glycolysis and oxidative phosphorylation (OxPhos) of mutant p53R248Q overexpression in HeLa cells (HeLa-M) was analyzed and compared with cells overexpressing wild-type p53 (HeLa-H) and nontransfected cells containing negligible p53 levels (HeLa-L). p53 R248Q overexpression induced early cell detachment during in vitro growth; however, detached HeLa-M cells showed high viability, shorter generation time and significant diminution in the adhesion proteins E-cadherin and ß-catenin versus HeLa-H and HeLa-L cells. Under normoxia, a lower growth rate of attached HeLa-M cells correlated with decreased levels of proliferating cell nuclear antigen (PCNA), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α), adenosine monophosphate-activated protein kinase (AMPK), mitochondrial proteins (20-80%) and OxPhos flux (69 ± 12%). On the contrary, HeLa-M also showed increased contents of CDKN1A, nuclear factor κB (NF-κB), c-MYC, hypoxia-inducible factor 1-α (HIF-1α; 1-4 times), glycolytic HIF-1α targets (2-4 times), and glycolysis flux (2-fold) versus HeLa-H. In consequence, glycolysis provided ~70% of the cellular adenosine triphosphate (ATP) in HeLa-M cells under normoxia whereas, OxPhos predominated (65-82%) in HeLa-H and HeLa-L cells. Pifithrin-α, a specific p53 inhibitor, did not alter the p53 R248Q target protein contents and OxPhos and glycolytic fluxes, and a poor HIF-1α-p53 R248Q interaction was attained, in HeLa-M cells. These observations suggested that p53 R248Q deficiently interacted with pifithrin-α and HIF-1α. Therefore, lower mitochondrial biogenesis, deficient HIF-1α/mutant p53 interaction, and development of a pseudohypoxic state under normoxia were the apparent biochemical mechanisms underlying glycolysis activation and OxPhos downregulation in HeLa-M cells.


Assuntos
Glicólise , Mutação , Fosforilação Oxidativa , Proteína Supressora de Tumor p53/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Proliferação de Células , Feminino , Células HeLa , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Biogênese de Organelas , Hipóxia Tumoral , Microambiente Tumoral , Proteína Supressora de Tumor p53/metabolismo , Neoplasias do Colo do Útero/patologia
2.
Toxicol Appl Pharmacol ; 370: 65-77, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30878505

RESUMO

The resveratrol (RSV) efficacy to affect the proliferation of several cancer cell lines was initially examined. RSV showed higher potency to decrease growth of metastatic HeLa and MDA-MB-231 (IC50 = 200-250 µM) cells than of low metastatic MCF-7, SiHa and A549 (IC50 = 400-500 µM) and non-cancer HUVEC and 3T3 (IC50≥600 µM) cells after 48 h exposure. In order to elucidate the biochemical mechanisms underlying RSV anti-cancer effects, the energy metabolic pathways and the oxidative stress metabolism were analyzed in HeLa cells as metastatic-type cell model. RSV (200 µM/48 h) significantly decreased both glycolysis and oxidative phosphorylation (OxPhos) protein contents (30-90%) and fluxes (40-70%) vs. non-treated cells. RSV (100 µM/1-5 min) also decreased at a greater extent OxPhos flux (net ADP-stimulated respiration) of isolated tumor mitochondria (> 50%) than of non-tumor mitochondria (< 50%), particularly with succinate as oxidizable substrate. In addition, RSV promoted an excessive cellular ROS (2-3 times) production corresponding with a significant decrement in the SOD activity (but not in its content) and GSH levels; whereas the catalase, glutahione reductase, glutathione peroxidase and glutathione-S-transferase activities (but not their contents) remained unchanged. RSV (200 µM/48 h) also induced cellular death although not by apoptosis but rather by promoting a strong mitophagy activation (65%). In conclusion, RSV impaired OxPhos by inducing mitophagy and ROS over-production, which in turn halted metastatic HeLa cancer cell growth.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Resveratrol/farmacologia , Células 3T3 , Animais , Linhagem Celular Tumoral , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Camundongos , Mitofagia/efeitos dos fármacos , Metástase Neoplásica/prevenção & controle , Compostos Fitoquímicos/farmacologia
3.
Arch Biochem Biophys ; 669: 39-49, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31128085

RESUMO

To enhance our understanding of the control of archaeal carbon central metabolism, a detailed analysis of the regulation mechanisms of both fructose1,6-bisphosphatase (FruBPase) and ADP-phosphofructokinase-1 (ADP-PFK1) was carried out in the methanogen Methanosarcina acetivorans. No correlations were found among the transcript levels of the MA_1152 and MA_3563 (frubpase type II and pfk1) genes, the FruBPase and ADP-PFK1 activities, and their protein contents. The kinetics of the recombinant FruBPase II and ADP-PFK1 were hyperbolic and showed simple mixed-type inhibition by AMP and ATP, respectively. Under physiological metabolite concentrations, the FruBPase II and ADP-PFK1 activities were strongly modulated by their inhibitors. To assess whether these enzymes were also regulated by a phosphorylation/dephosphorylation process, the recombinant enzymes and cytosolic-enriched fractions were incubated in the presence of commercial protein phosphatase or protein kinase. De-phosphorylation of ADP-PFK1 slightly decreased its activity (i.e. Vmax) and did not change its kinetic parameters and oligomeric state. Thus, the data indicated a predominant metabolic regulation of both FruBPase and ADP-PFK1 activities by adenine nucleotides and suggested high degrees of control on the respective pathway fluxes.


Assuntos
Proteínas Arqueais/metabolismo , Frutose-Bifosfatase/metabolismo , Methanosarcina/metabolismo , Fosfofrutoquinase-1/metabolismo , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Galinhas , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/isolamento & purificação , Frutosefosfatos/metabolismo , Genes Arqueais , Cinética , Methanosarcina/genética , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/isolamento & purificação , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional
4.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1679-1690, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28648642

RESUMO

Cancer stem cells are responsible for tumor recurrence and metastasis. A new highly reproducible procedure for human breast cancer MCF-7 stem cells (BCSC) isolation and selection was developed by using a combination of hypoxia/hypoglycemia plus taxol and adriamycin for 24h. The BCSC enriched fraction (i) expressed (2-15 times) the typical stemness protein markers CD44+, ALDH1A3 and Oct 3/4; (ii) increased its clonogenicity index (20-times), invasiveness profile (>70%), migration capacity (100%) and ability to form mammospheres, compared to its non-metastatic MCF-7 counterpart. This isolation and selection protocol was successful to obtain stem cell enriched fractions from A549, SiHa and medulloblastoma cells. Since the secretion of HPI/AMF cytokine seems involved in metastasis, the effects of erytrose-4-phosphate (E4P) and 6-phosphogluconate (6PG), potent HPI inhibitors, on the acquisition of the breast stem cell-like phenotype were also evaluated. The presence of E4P during the BCSC selection deterred the development of the stemness phenotype, whereas both extracellular E4P (5-250nM) and 6PG (1µM) as well as siRNA HPI/AMF depressed the BCSC invasiveness ability (>90%), clonogenicity index (>90%) and contents (50-96%) of stemness (CD44, ALDH1A), pluripotency (p38 MAPK, Oct3/4, wnt/ß-catenin) and EMT (SNAIL, MMP-1, vimentin) markers. The cytokine inhibitor repertaxin (10nM) or the anti-IL-8 or anti-TGF-ß monoclonal antibodies (10µg/mL) did not significantly affect the BCSC metastatic phenotype. E4P also diminished (75%) the formation and growth of MCF-7 stem cell mammospheres. These results suggested that E4P by directly interacting with extracellular HPI/AMF may be an effective strategy to deter BCSC growth and progression.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Hipóxia Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Transição Epitelial-Mesenquimal/genética , Feminino , Gluconatos/administração & dosagem , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Células MCF-7 , Metástase Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Paclitaxel/administração & dosagem , RNA Interferente Pequeno/genética , Fosfatos Açúcares/administração & dosagem , Sulfonamidas/administração & dosagem
5.
Mol Pharm ; 15(6): 2151-2164, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29746779

RESUMO

To establish alternative targeted therapies against triple negative (TN) breast cancer, the energy metabolism and the sensitivity of cell growth, migration, and invasiveness toward metabolic, canonical, and NSAID inhibitors were analyzed in MDA-MB-231 and MDA-MB-468, two TN metastatic breast cancer cell lines, under both normoxia (21% O2) and hypoxia (0.1% O2). For comparative purposes, the analysis was also carried out in the less-metastatic breast MCF-7 cancer cells. Under normoxia, oxidative phosphorylation (OxPhos) was significantly higher (2-times) in MDA-MB-468 than in MDA-MB-231 and MCF-7, whereas their glycolytic fluxes and OxPhos and glycolytic protein contents were all similar. TN cancer cell lines mainly depended on OxPhos (62-75%), whereas MCF-7 cells equally depended on both pathways for ATP supply. Hypoxia for 24 h promoted a significant increase (>20 times) in the glycolytic transcriptional master factor HIF1-α in its target proteins GLUT-1, HKI and II, and LDH-A (2-4 times) as well as in the glycolytic flux (1.3-2 times) vs normoxia in MDA-MB-468, MDA-MB-231, and MCF-7. On the contrary, hypoxia decreased (15-60%) the contents of COXIV, 2OGDH, ND1, and ATP synthase as well as the OxPhos flux (50-75%), correlating with a high mitophagy level in the three cell lines. Under hypoxia, the three cancer cell lines mainly depended on glycolysis (70-80%). Anti-mitochondrial drugs (oligomycin, casiopeina II-gly, and methoxy-TEA) and celecoxib, at doses used to block OxPhos, significantly decreased TN cancer cell proliferation (IC50 = 2-20 µM), migration capacity (10-90%), and invasiveness (25-65%). The present data support the use of mitochondrially targeted inhibitors for the treatment of TN breast carcinoma.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Células 3T3 , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
6.
J Cell Physiol ; 232(6): 1346-1359, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27661776

RESUMO

The accelerated growth of solid tumors leads to episodes of both hypoxia and hypoglycemia (HH) affecting their intermediary metabolism, signal transduction, and transcriptional activity. A previous study showed that normoxia (20% O2 ) plus 24 h hypoglycemia (2.5 mM glucose) increased glycolytic flux whereas oxidative phosphorylation (OxPhos) was unchanged versus normoglycemia in HeLa cells. However, the simultaneous effect of HH on energy metabolism has not been yet examined. Therefore, the effect of hypoxia (0.1-1% O2 ) plus hypoglycemia on the energy metabolism of HeLa cells was analyzed by evaluating protein content and activity, along with fluxes of both glycolysis and OxPhos. Under hypoxia, in which cell growth ceased and OxPhos enzyme activities, ΔΨm and flux were depressed, hypoglycemia did not stimulate glycolytic flux despite increasing H-RAS, p-AMPK, GLUT1, GLUT3, and HKI levels, and further decreasing mitochondrial enzyme content. The impaired mitochondrial function in HH cells correlated with mitophagy activation. The depressed OxPhos and unchanged glycolysis pattern was also observed in quiescent cells from mature multicellular tumor spheroids, suggesting that these inner cell layers are similarly subjected to HH. The principal ATP supplier was glycolysis for HH 2D monolayer and 3D quiescent spheroid cells. Accordingly, the glycolytic inhibitors iodoacetate and gossypol were more effective than mitochondrial inhibitors in decreasing HH-cancer cell viability. Under HH, stem cell-, angiogenic-, and EMT-biomarkers, as well as glycoprotein-P content and invasiveness, were also enhanced. These observations indicate that HH cancer cells develop an attenuated Warburg and pronounced EMT- and invasive-phenotype. J. Cell. Physiol. 232: 1346-1359, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Transição Epitelial-Mesenquimal , Glicólise , Hipoglicemia/patologia , Esferoides Celulares/patologia , Trifosfato de Adenosina/farmacologia , Antineoplásicos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Células HeLa , Humanos , Concentração Inibidora 50 , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Invasividade Neoplásica , Oxigênio/farmacologia , Fenótipo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
7.
Biochim Biophys Acta ; 1853(12): 3266-78, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26434996

RESUMO

The role of p53 as modulator of OxPhos and glycolysis was analyzed in HeLa-L (cells containing negligible p53 protein levels) and HeLa-H (p53-overexpressing) human cervix cancer cells under normoxia and hypoxia. In normoxia, functional p53, mitochondrial enzyme contents, mitochondrial electrical potential (ΔΨm) and OxPhos flux increased in HeLa-H vs. HeLa-L cells; whereas their glycolytic enzyme contents and glycolysis flux were unchanged. OxPhos provided more than 70% of the cellular ATP and proliferation was abolished by anti-mitochondrial drugs in HeLa-H cells. In hypoxia, both cell proliferations were suppressed, but HeLa-H cells exhibited a significant decrease in OxPhos protein contents, ΔΨm and OxPhos flux. Although glycolytic function was also diminished vs. HeLa-L cells in hypoxia, glycolysis provided more than 60% of cellular ATP in HeLa-H cells. The energy metabolism phenotype of HeLa-H cells was reverted to that of HeLa-L cells by incubating with pifithrin-α, a p53-inhibitor. In normoxia, the energy metabolism phenotype of breast cancer MCF-7 cells was similar to that of HeLa-H cells, whereas p53shRNAMCF-7 cells resembled the HeLa-L cell phenotype. In hypoxia, autophagy proteins and lysosomes contents increased 2-5 times in HeLa-H cells suggesting mitophagy activation. These results indicated that under normoxia p53 up-regulated OxPhos without affecting glycolysis, whereas under hypoxia, p53 down-regulated both OxPhos (severely) and glycolysis (weakly). These p53 effects appeared mediated by the formation of p53-HIF-1α complexes. Therefore, p53 exerts a dual and contrasting regulatory role on cancer energy metabolism, depending on the O2level.


Assuntos
Neoplasias da Mama/metabolismo , Metabolismo Energético , Proteína Supressora de Tumor p53/fisiologia , Neoplasias do Colo do Útero/metabolismo , Neoplasias da Mama/patologia , Divisão Celular , Hipóxia Celular , Feminino , Células HeLa , Humanos , Células MCF-7 , Neoplasias do Colo do Útero/patologia
8.
Biochim Biophys Acta ; 1843(6): 1043-53, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24440856

RESUMO

Epithelial-mesenchymal transition (EMT) and cellular invasiveness are two pivotal processes for the development of metastatic tumor phenotypes. The metastatic profile of non-metastatic MCF-7 cells growing as multi-cellular tumor microspheroids (MCTSs) was analyzed by determining the contents of the EMT, invasive and migratory proteins, as well as their migration and invasiveness potential and capacity to secrete active cytokines such as the glucose phosphate isomerase/AMF (GPI/AMF). As for the control, the same analysis was also performed in MCF-7 and MDA-MB-231 (highly metastatic, MDA) monolayer cells, and in stage IIIB and IV human metastatic breast biopsies. The proliferative cell layers (PRL) of mature MCF-7 MCTSs, MDA monolayer cells and metastatic biopsies exhibited increased cellular contents (2-15 times) of EMT (ß-catenin, SNAIL), migratory (vimentin, cytokeratin, and fibronectin) and invasive (MMP-1, VEGF) proteins versus MCF-7 monolayer cells, quiescent cell layers of mature MCF-7 MCTS and non-metastatic breast biopsies. The increase in metastatic proteins correlated with substantially elevated cellular abilities for migration (18-times) and invasiveness (13-times) and with the higher level (6-times) of the cytokine GPI/AMF in the extracellular medium of PRL, as compared to MCF-7 monolayer cells. Interestingly, the addition of the GPI/AMF inhibitors erythrose-4-phosphate or 6-phosphogluconate at micromolar doses significantly decreased its extracellular activity (>80%), with a concomitant diminution in the metastatic protein content and migratory tumor cell capacity, and with no inhibitory effect on tumor lactate production or toxicity on 3T3 mouse fibroblasts. The present findings provide new insights into the discovery of metabolic inhibitors to be used as complementary therapy against metastatic and aggressive tumors.


Assuntos
Neoplasias da Mama/prevenção & controle , Carcinoma Ductal de Mama/prevenção & controle , Movimento Celular/efeitos dos fármacos , Gluconatos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Esferoides Celulares/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Células 3T3 , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/secundário , Proliferação de Células/efeitos dos fármacos , Estudos Transversais , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Ácido Láctico/metabolismo , Células MCF-7 , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Fenótipo , Esferoides Celulares/patologia
9.
Biochim Biophys Acta ; 1833(3): 541-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23195224

RESUMO

During multi-cellular tumor spheroid growth, oxygen and nutrient gradients develop inducing specific genetic and metabolic changes in the proliferative and quiescent cellular layers. An integral analysis of proteomics, metabolomics, kinetomics and fluxomics revealed that both proliferative- (PRL) and quiescent-enriched (QS) cellular layers of mature breast tumor MCF-7 multi-cellular spheroids maintained similar glycolytic rates (3-5 nmol/min/10(6) cells), correlating with similar GLUT1, GLUT3, PFK-1, and HKII contents, and HK and LDH activities. Enhanced glycolytic fluxes in both cell layer fractions also correlated with higher HIF-1α content, compared to MCF-7 monolayer cultures. On the contrary, the contents of the mitochondrial proteins GA-K, ND1, COXIV, PDH-E1α, 2-OGDH, SDH and F1-ATP synthase (20 times) and the oxidative phosphorylation (OxPhos) flux (2-times) were higher in PRL vs. QS. Enhanced mitochondrial metabolism in the PRL layers correlated with an increase in the oncogenes h-Ras and c-Myc, and transcription factors p32 and PGC-1α, which are involved in the OxPhos activation. On the other hand, the lower mitochondrial function in QS was associated with an increase in Beclin, LC3B, Bnip3 and LAMP protein levels, indicating active mitophagy and lysosome biosynthesis processes. Although a substantial increase in glycolysis was developed, OxPhos was the predominant ATP supplier in both QS and PRL layers. Therefore, targeted anti-mitochondrial therapy by using oligomycin (IC(50)=11 nM), Casiopeina II-gly (IC(50)=40 nM) or Mitoves (IC(50)=7 nM) was effective to arrest MCF-7 spheroid growth without apparent effect on normal epithelial breast tissue at similar doses; canonical anti-neoplastic drugs such as cisplatin and tamoxifen were significantly less potent.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Proteínas Mitocondriais/metabolismo , Mitofagia/efeitos dos fármacos , Oligomicinas/farmacologia , Compostos Organometálicos/farmacologia , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/farmacologia , Western Blotting , Mama/efeitos dos fármacos , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cobre/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Técnicas Imunoenzimáticas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteoma/análise , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Desacopladores/farmacologia
10.
Arch Toxicol ; 88(7): 1327-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24792321

RESUMO

Significant efforts have been made for the development of new anticancer drugs (protein kinase or proteasome inhibitors, monoclonal humanized antibodies) with presumably low or negligible side effects and high specificity. However, an in-depth analysis of the side effects of several currently used canonical (platin-based drugs, taxanes, anthracyclines, etoposides, antimetabolites) and new generation anticancer drugs as the first line of clinical treatment reveals significant perturbation of glycolysis and oxidative phosphorylation. Canonical and new generation drug side effects include decreased (1) intracellular ATP levels, (2) glycolytic/mitochondrial enzyme/transporter activities and/or (3) mitochondrial electrical membrane potentials. Furthermore, the anti-proliferative effects of these drugs are markedly attenuated in tumor rho (0) cells, in which functional mitochondria are absent; in addition, several anticancer drugs directly interact with isolated mitochondria affecting their functions. Therefore, several anticancer drugs also target the energy metabolism, and hence, the documented inhibitory effect of anticancer drugs on cancer growth should also be linked to the blocking of ATP supply pathways. These often overlooked effects of canonical and new generation anticancer drugs emphasize the role of energy metabolism in maintaining cancer cells viable and its targeting as a complementary and successful strategy for cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/efeitos adversos , Desenho de Fármacos , Glicólise/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/patologia
11.
Rev Neurosci ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38841811

RESUMO

Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.

12.
Metabolites ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786726

RESUMO

The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.

13.
Med Oncol ; 40(3): 104, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36821013

RESUMO

Glioblastoma (GBM) is the most frequent brain cancer and more lethal than other cancers. Characteristics of this cancer are its high drug resistance, high recurrence rate and invasiveness. Invasiveness in GBM is related to overexpression of matrix metalloproteinases (MMPs) which are mediated by wnt/ß-catenin and induced by the activation of signaling pathways extracellularly activated by the cytokine neuroleukin (NLK) in cancer stem cells (CSC). Therefore, in this work we evaluated the effect of the tetrose saccharide, erythrose (Ery), a NLK inhibitor of invasiveness and drug sensitization in glioblastoma stem cells (GSC). GSC were obtained from parental U373 cell line by a CSC phenotype enrichment protocol based on microenvironmental stress conditions such as hypoxia, hipoglycemia, drug exposition and serum starvation. Enriched fraction of GSC overexpressed the typical markers of brain CSC: low CD133+ and high CD44; in addition, epithelial to mesenchyme transition (EMT) markers and MMPs were increased several times in GSC vs. U373 correlating with higher invasiveness, elongated and tubular mitochondrion and temozolomide (TMZ) resistance. IC50 of Ery was found at nM concentration and at 24 h induced a severe diminution of EMT markers, MMPs and invasiveness in GSC. Furthermore, the phosphorylation pattern of NLK after Ery exposition also was affected. In addition, when Ery was administered to GSC at subIC50, it was capable of reverting TMZ resistance at concentrations innocuous to non-tumor cancer cells. Moreover, Ery added daily induced the death of all GSC. Those findings indicated that the phytodrug Ery could be used as adjuvant therapy in GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Tetroses/metabolismo , Tetroses/farmacologia , Tetroses/uso terapêutico , Linhagem Celular Tumoral , Temozolomida/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Encefálicas/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/metabolismo
14.
Biochim Biophys Acta ; 1807(6): 755-67, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21110941

RESUMO

Most cancer cells exhibit an accelerated glycolysis rate compared to normal cells. This metabolic change is associated with the over-expression of all the pathway enzymes and transporters (as induced by HIF-1α and other oncogenes), and with the expression of hexokinase (HK) and phosphofructokinase type 1 (PFK-1) isoenzymes with different regulatory properties. Hence, a control distribution of tumor glycolysis, modified from that observed in normal cells, can be expected. To define the control distribution and to understand the underlying control mechanisms, kinetic models of glycolysis of rodent AS-30D hepatoma and human cervix HeLa cells were constructed with experimental data obtained here for each pathway step (enzyme kinetics; steady-state pathway metabolite concentrations and fluxes). The models predicted with high accuracy the fluxes and metabolite concentrations found in living cancer cells under physiological O(2) and glucose concentrations as well as under hypoxic and hypoglycemic conditions prevailing during tumor progression. The results indicated that HK≥HPI>GLUT in AS-30D whereas glycogen degradation≥GLUT>HK in HeLa were the main flux- and ATP concentration-control steps. Modeling also revealed that, in order to diminish the glycolytic flux or the ATP concentration by 50%, it was required to decrease GLUT or HK or HPI by 76% (AS-30D), and GLUT or glycogen degradation by 87-99% (HeLa), or decreasing simultaneously the mentioned steps by 47%. Thus, these proteins are proposed to be the foremost therapeutic targets because their simultaneous inhibition will have greater antagonistic effects on tumor energy metabolism than inhibition of all other glycolytic, non-controlling, enzymes.


Assuntos
Glicólise/fisiologia , Modelos Teóricos , Neoplasias/metabolismo , Transporte Biológico/fisiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Metabolismo Energético/fisiologia , Ativação Enzimática/fisiologia , Glucose/farmacocinética , Células HeLa , Hexoquinase/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Modelos Biológicos , Neoplasias/enzimologia , Neoplasias/patologia , Concentração Osmolar , Fosfofrutoquinase-1/metabolismo , Células Tumorais Cultivadas
15.
J Cell Biochem ; 113(5): 1692-703, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22213537

RESUMO

Kinetic analysis of PFK-1 from rodent AS-30D, and human HeLa and MCF-7 carcinomas revealed sigmoidal [fructose 6-phosphate, Fru6P]-rate curves with different V(m) values when varying the allosteric activator fructose 2,6 bisphosphate (Fru2,6BP), AMP, Pi, NH(4)(+), or K(+). The rate equation that accurately predicted this behavior was the exclusive ligand binding concerted transition model together with non-essential hyperbolic activation. PFK-1 from rat liver and heart also exhibited the mixed cooperative-hyperbolic kinetic behavior regarding activators. Lowering pH induced decreased affinity for Fru6P, Fru2,6BP, citrate, and ATP (as inhibitor); as well as decreased V(m) and increased content of inactive (T) enzyme forms. High K(+) prompted increased (Fru6P) or decreased (activators) affinities; increased V(m); and increased content of active (R) enzyme forms. mRNA expression analysis and nucleotide sequencing showed that the three PFK-1 isoforms L, M, and C are transcribed in the three carcinomas. However, proteomic analysis indicated the predominant expression of L in liver, of M in heart and MCF-7 cells, of L>M in AS-30D cells, and of C in HeLa cells. PFK-1M showed the highest affinities for F6P and citrate and the lowest for ATP (substrate) and F2,6BP; PFK-1L showed the lowest affinity for F6P and the highest for F2,6BP; and PFK-1C exhibited the highest affinity for ATP (substrate) and the lowest for citrate. Thus, the present work documents the kinetic signature of each PFK-1 isoform, and facilitates the understanding of why this enzyme exerts significant or negligible glycolysis flux-control in normal or cancer cells, respectively, and how it regulates the onset of the Pasteur effect.


Assuntos
Neoplasias/enzimologia , Neoplasias/genética , Fosfofrutoquinase-1/metabolismo , Animais , Sequência de Bases , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , DNA Complementar/genética , Ativação Enzimática , Feminino , Células HeLa , Humanos , Cinética , Fígado/enzimologia , Neoplasias Hepáticas Experimentais/enzimologia , Neoplasias Hepáticas Experimentais/genética , Miocárdio/enzimologia , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1 Hepática/genética , Fosfofrutoquinase-1 Hepática/metabolismo , Fosfofrutoquinase-1 Muscular/genética , Fosfofrutoquinase-1 Muscular/metabolismo , Fosfofrutoquinase-1 Tipo C/genética , Fosfofrutoquinase-1 Tipo C/metabolismo , Polimorfismo Genético , Ratos , Ratos Wistar , Especificidade por Substrato , Neoplasias do Colo do Útero/enzimologia , Neoplasias do Colo do Útero/genética
16.
Mol Microbiol ; 82(3): 578-90, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21895798

RESUMO

In Saccharomyces cerevisiae, the first committed step in the lysine (Lys) biosynthetic pathway is catalysed by the Lys20 and Lys21 homocitrate synthase (HCS) isoforms. Overexpression of Lys20 resulted in eightfold increased Lys, as well as 2-oxoglutarate pools, which were not attained by overexpressing Lys21 or other pathway enzymes (Lys1, Lys9 or Lys12). A metabolic control analysis-based strategy, by gradually and individually manipulating the Lys20 and Lys21 activities demonstrated that the cooperative and strongly feedback-inhibited Lys21 isoform exerted low control of the pathway flux whereas most of the control resided on the non-cooperative and weakly feedback-inhibited Lys20 isoform. Therefore, the higher control of Lys20 over the Lys flux represents an exception to the dogma of higher pathway control by the strongest feedback-inhibited enzyme and points out to multi-site engineering (HCS isoforms and supply of precursors) to increase Lys synthesis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Lisina/biossíntese , Oxo-Ácido-Liases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas/genética , Regulação Fúngica da Expressão Gênica , Isoenzimas/metabolismo , Modelos Biológicos
17.
Arch Toxicol ; 86(5): 753-66, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22349057

RESUMO

The copper-based drug Casiopeina II-gly (CasII-gly) shows potent antineoplastic effect and diminishes mitochondrial metabolism on several human and rodent malignant tumors. To elucidate whether CasII-gly also affects glycolysis, (a) the flux through the complete pathway and the initial segment and (b) the activities of several glycolytic enzymes of AS-30D hepatocarcinoma cells were determined. CasII-gly (IC50 = 0.74-6.7 µM) was more effective to inhibit 24-72 h growth of several human carcinomas than 3-bromopyruvate (3BrPyr) (IC50 = 45-100 µM) with no apparent effect on normal human-proliferating lymphocytes and HUVECs. In short-term 60-min experiments, CasII-gly increased tumor cell lactate production and glycogen breakdown. CasII-gly was 1.3-21 times more potent than 3BrPyr and cisplatin to inhibit tumor HK. As CasII-gly inhibited the soluble and mitochondrial HK activities and the flux through the HK-TPI glycolytic segment, whereas PFK-1, GAPDH, PGK, PYK activities and HPI-TPI segment flux were not affected, the data suggested glycogenolysis activation induced by HK inhibition. Accordingly, glycogen-depleted as well as oligomycin-treated cancer cells became more sensitive to CasII-gly. The inhibition time-course of HK by CasII-gly was slower than that of OxPhos in AS-30D cells, indicating that glycolytic toxicity was secondary to mitochondria, the primary CasII-gly target. In long-term 24-h experiments with HeLa cells, 5 µM CasII-gly inhibited OxPhos (80%), glycolysis (40%), and HK (42%). The present data indicated that CasII-gly is an effective multisite anticancer drug simultaneously targeting mitochondria and glycolysis.


Assuntos
Antineoplásicos/farmacologia , Glicólise/efeitos dos fármacos , Hexoquinase/metabolismo , Compostos Organometálicos/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Piruvatos/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Metabolismo Energético/efeitos dos fármacos , Glicogênio/metabolismo , Humanos , Lactatos/metabolismo , Linfócitos/efeitos dos fármacos , Fosfofrutoquinase-1/metabolismo , Piruvato Quinase/metabolismo , Ratos
18.
Curr Med Chem ; 29(15): 2719-2735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34636290

RESUMO

BACKGROUND: The major hurdles for successful cancer treatment are drug resistance and invasiveness developed by breast cancer stem cells (BCSC). OBJECTIVE: As these two processes are highly energy-dependent, the identification of the main ATP supplier required for stem cell viability may result advantageous in the design of new therapeutic strategies to deter malignant carcinomas. METHODS: The energy metabolism (glycolysis and oxidative phosphorylation, OxPhos) was systematically analyzed by assessing relevant protein contents, enzyme activities, and pathway fluxes in BCSC. Once identified as the main ATP supplier, selective energy inhibitors and canonical breast cancer drugs were used to block stem cell viability and metastatic properties. RESULTS: OxPhos and glycolytic protein contents, as well as HK and LDH activities were several times higher in BCSC than in their parental line, MCF-7 cells. However, CS, GDH, COX activities, and both energy metabolism pathway fluxes were significantly lower (38-86%) in BCSC than in MCF-7 cells. OxPhos was the main ATP provider (>85%) in BCSC. Accordingly, oligomycin (a specific and potent canonical OxPhos inhibitor) and other non-canonical drugs with inhibitory effect on OxPhos (celecoxib, dimethylcelecoxib) significantly decreased BCSC viability, levels of epithelial-mesenchymal transition proteins, invasiveness, and induced ROS over-production, with IC50 values ranging from 1 to 20 µM in 24 h treatment. In contrast, glycolytic inhibitors (gossypol, iodoacetic acid, 3-bromopyruvate, 2-deoxyglucose) and canonical chemotherapeutic drugs (paclitaxel, doxorubicin, cisplatin) were much less effective against BCSC viability (IC50> 100 µM). CONCLUSION: These results indicated that the use of some NSAIDs may be a promising alternative therapeutic strategy to target BCSC.


Assuntos
Neoplasias da Mama , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Neoplasias da Mama/patologia , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células-Tronco Neoplásicas/metabolismo
19.
J Cell Biochem ; 112(10): 2703-15, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21678471

RESUMO

In last decades, the basic, clinical, and translational research efforts have been directed to the identification of standard biomarkers associated with the degree of malignancy. There is an increasingly public health concern for earlier detection of cancer development at stages in which successful treatments can be achieved. To meet this urgent clinical demand, early stage cancer biomarkers supported by reliable and robust experimental data that can be readily applicable in the clinical practice, are required. In the current standard protocols, when one or two of the canonical proliferating index biomarkers are analyzed, contradictory results are frequently reached leading to incorrect cancer diagnostic and unsuccessful therapies. Therefore, the identification of other cellular characteristics or signatures present in the tumor cells either alone or in combination with the well-established proliferation markers emerge as an alternative strategy in the improvement of cancer diagnosis and treatment. Because it is well known that several pathways and processes are altered in tumor cells, the concept of "single marker" in cancer results incorrect. Therefore, this review aims to analyze and discuss the proposal that the molecular profile of different genes or proteins in different altered tumor pathways must be established to provide a better global clinical pattern for cancer detection and prognosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/patologia , Prognóstico , Transdução de Sinais/fisiologia
20.
FEBS J ; 288(13): 4064-4080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33400378

RESUMO

Under physiological conditions, cells produce low basal levels of reactive oxygen species (ROS); however, in pathologic conditions ROS production increases dramatically, generating high concentrations of toxic unsaturated aldehydes. Aldehyde dehydrogenases (ALDHs) are responsible for detoxification of these aldehydes protecting the cell. Due to the physiological relevance of these enzymes, it is important to design strategies to modulate their activity. It was previously reported that omeprazole activation of ALDH1A1 protected Escherichia coli cells overexpressing this enzyme, from oxidative stress generated by H2 O2 . In this work, omeprazole cell protection potential was evaluated in eukaryotic cells. AS-30D cell or hepatocyte suspensions were subjected to a treatment with omeprazole and exposure to light (that is required to activate omeprazole in the active site of ALDH) and then exposed to H2 O2 . Cells showed viability similar to control cells, total activity of ALDH was preserved, while cell levels of lipid aldehydes and oxidative stress markers were maintained low. Cell protection by omeprazole was avoided by inhibition of ALDHs with disulfiram, revealing the key role of these enzymes in the protection. Additionally, omeprazole also preserved ALDH2 (mitochondrial isoform) activity, diminishing lipid aldehyde levels and oxidative stress in this organelle, protecting mitochondrial respiration and transmembrane potential formation capacity, from the stress generated by H2 O2 . These results highlight the important role of ALDHs as part of the antioxidant system of the cell, since if the activity of these enzymes decreases under stress conditions, the viability of the cell is compromised.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Omeprazol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Família Aldeído Desidrogenase 1/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/efeitos da radiação , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Luz , Oxidantes/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa