Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 24(55): 14631-14635, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30070401

RESUMO

From theoretical calculations and a rational synthesis methodology, it has been possible to prepare nanocrystalline (60-80 nm) chabazite with an optimized framework Al distribution that has a positive impact on its catalytic properties. This is exemplified for the methanol-to-olefin (MTO) process. The nanosized material with the predicted Al distribution maximizes the formation of the required MTO hydrocarbon pool intermediates, while better precluding excessive diffusion pathways that favor the rapid catalyst deactivation by coke formation.

2.
Chem Sci ; 10(34): 8009-8015, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31853356

RESUMO

By using a Diels-Alder (DA) reaction as a base case, we show that a pure silica zeolite acting as an entropy-trapping scaffold can be synthesized with an organic structure directing agent (OSDA) analogue of the transition state (TS) of the DA reaction. A cavity stabilization of the TS is observed with the corresponding decrease in the activation energy of the reaction. A lower enthalpy of activation and a larger decrease in entropy are obtained with the zeolite synthesized with the analogue of the DA TS when compared with other zeolitic structures. Those differences are maintained, while catalytic activity is increased, when active sites are introduced in the zeolite. The catalytic zeolitic system synthesized with the OSDA analogue of the TS shows conceptual similarities with "de novo design" of an artificial enzyme to perform DA reactions, in where a suitable scaffold of existing proteins is chosen, and computationally designed active sites able to catalyze the cycloaddition reaction are introduced.

3.
Chem Commun (Camb) ; 54(71): 9989-9992, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30123912

RESUMO

Non surfactant cyclic alkylammonium can selectively decrease the rate of crystal growth along the x-y crystal axes during the synthesis of MWW zeolite. This results in an ∼60 nm nanocrystalline zeolite that shows remarkable catalytic properties for the production of cumene.

4.
Chem Sci ; 8(12): 8138-8149, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29568462

RESUMO

The synthesis of the ZSM-5 and beta zeolites in their nanosized form has been achieved by using simple alkyl-substituted mono-cationic cyclic ammonium cations as OSDA molecules. The particular combination of a cyclic fragment and a short linear alkyl-chain group (preferentially C4) within the monocationic OSDA molecules allows directing the crystallization of nanosized zeolites with excellent solid yields (above 90%). Interestingly, the formation of the nanosized ZSM-5 and beta zeolites mostly depends on the size and nature of the cyclic fragment of the OSDA molecule, resulting in all cases in nanocrystalline solids with homogeneous distributions of particle sizes (∼10-25 nm) and controlled Si/Al molar ratios (∼15-30). The achieved nanosized ZSM-5 and beta zeolites have been extensively characterized by different techniques to study their physico-chemical properties, such as chemical composition, pore accessibility or Brønsted acidity, among others. Moreover, the catalytic properties of the nanosized ZSM-5 and beta zeolites have been evaluated for different chemical reactions, including methanol-to-olefins (MTO) in the case of ZSM-5, and alkylation of benzene with propylene to obtain cumene and oligomerization of light olefins to liquid fuels in the case of beta, observing in all cases improved catalytic activity and product selectivity towards target products when compared to related catalysts.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa