Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(7): 1480-1499, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169095

RESUMO

Dopaminergic (DA) neurons play pivotal roles in diverse brain functions, spanning movement, reward processing and sensory perception. DA neurons are most abundant in the midbrain (Substantia Nigra pars compacta [SNC] and Ventral Tegmental Area [VTA]) and the olfactory bulb (OB) in the forebrain. Interestingly, a subtype of OB DA neurons is capable of regenerating throughout life, while a second class is exclusively born during embryonic development. Compelling evidence in SNC and VTA also indicates substantial heterogeneity in terms of morphology, connectivity and function. To further investigate this heterogeneity and directly compare form and function of midbrain and forebrain bulbar DA neurons, we performed immunohistochemistry and whole-cell patch-clamp recordings in ex vivo brain slices from juvenile DAT-tdTomato mice. After confirming the penetrance and specificity of the dopamine transporter (DAT) Cre line, we compared soma shape, passive membrane properties, voltage sags and action potential (AP) firing across midbrain and forebrain bulbar DA subtypes. We found that each DA subgroup within midbrain and OB was highly heterogeneous, and that DA neurons across the two brain areas are also substantially different. These findings complement previous work in rats as well as gene expression and in vivo datasets, further questioning the existence of a single "dopaminergic" neuronal phenotype.


Assuntos
Neurônios Dopaminérgicos , Proteína Vermelha Fluorescente , Substância Negra , Camundongos , Ratos , Animais , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Bulbo Olfatório , Mesencéfalo/metabolismo , Área Tegmentar Ventral/metabolismo
2.
J Neurosci ; 41(10): 2135-2151, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33483429

RESUMO

Can alterations in experience trigger different plastic modifications in neuronal structure and function, and if so, how do they integrate at the cellular level? To address this question, we interrogated circuitry in the mouse olfactory bulb responsible for the earliest steps in odor processing. We induced experience-dependent plasticity in mice of either sex by blocking one nostril for one day, a minimally invasive manipulation that leaves the sensory organ undamaged and is akin to the natural transient blockage suffered during common mild rhinal infections. We found that such brief sensory deprivation produced structural and functional plasticity in one highly specialized bulbar cell type: axon-bearing dopaminergic neurons in the glomerular layer. After 24 h naris occlusion, the axon initial segment (AIS) in bulbar dopaminergic neurons became significantly shorter, a structural modification that was also associated with a decrease in intrinsic excitability. These effects were specific to the AIS-positive dopaminergic subpopulation because no experience-dependent alterations in intrinsic excitability were observed in AIS-negative dopaminergic cells. Moreover, 24 h naris occlusion produced no structural changes at the AIS of bulbar excitatory neurons, mitral/tufted and external tufted cells, nor did it alter their intrinsic excitability. By targeting excitability in one specialized dopaminergic subpopulation, experience-dependent plasticity in early olfactory networks might act to fine-tune sensory processing in the face of continually fluctuating inputs.SIGNIFICANCE STATEMENT Sensory networks need to be plastic so they can adapt to changes in incoming stimuli. To see how cells in mouse olfactory circuits can change in response to sensory challenges, we blocked a nostril for just one day, a naturally relevant manipulation akin to the deprivation that occurs with a mild cold. We found that this brief deprivation induces forms of axonal and intrinsic functional plasticity in one specific olfactory bulb cell subtype: axon-bearing dopaminergic interneurons. In contrast, intrinsic properties of axon-lacking bulbar dopaminergic neurons and neighboring excitatory neurons remained unchanged. Within the same sensory circuits, specific cell types can therefore make distinct plastic changes in response to an ever-changing external landscape.


Assuntos
Segmento Inicial do Axônio/patologia , Neurônios Dopaminérgicos/patologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/fisiopatologia , Privação Sensorial/fisiologia , Animais , Segmento Inicial do Axônio/fisiologia , Neurônios Dopaminérgicos/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
J Neurosci ; 35(4): 1573-90, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25632134

RESUMO

The axon initial segment (AIS) is a specialized structure near the start of the axon that is a site of neuronal plasticity. Changes in activity levels in vitro and in vivo can produce structural AIS changes in excitatory cells that have been linked to alterations in excitability, but these effects have never been described in inhibitory interneurons. In the mammalian olfactory bulb (OB), dopaminergic interneurons are particularly plastic, undergoing constitutive turnover throughout life and regulating tyrosine hydroxylase expression in an activity-dependent manner. Here we used dissociated cultures of rat and mouse OB to show that a subset of bulbar dopaminergic neurons possess an AIS and that these AIS-positive cells are morphologically and functionally distinct from their AIS-negative counterparts. Under baseline conditions, OB dopaminergic AISs were short and located distally along the axon but, in response to chronic 24 h depolarization, lengthened and relocated proximally toward the soma. These activity-dependent changes were in the opposite direction to both those we saw in non-GABAergic OB neurons and those reported previously for excitatory cell types. Inverted AIS plasticity in OB dopaminergic cells was bidirectional, involved all major components of the structure, was dependent on the activity of L-type CaV1 calcium channels but not on the activity of the calcium-activated phosphatase calcineurin, and was opposed by the actions of cyclin-dependent kinase 5. Such distinct forms of AIS plasticity in inhibitory interneurons and excitatory projection neurons may allow considerable flexibility when neuronal networks must adapt to perturbations in their ongoing activity.


Assuntos
Axônios/fisiologia , Neurônios Dopaminérgicos/classificação , Neurônios Dopaminérgicos/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Animais Recém-Nascidos , Axônios/efeitos dos fármacos , Células Cultivadas , Quinase 5 Dependente de Ciclina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Embrião de Mamíferos , Feminino , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Bulbo Olfatório/citologia , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
5.
J Neurosci ; 33(31): 12599-618, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23904597

RESUMO

In addition to its well established role in motor coordination, the cerebellum has been hypothesized to be involved in the control of cognitive and emotional functions. Although a cerebellar contribution to nonmotor functions has been supported by recent studies in human and monkey, it remains to be clarified with an in-depth, systematic approach in mouse mutants. Here we subjected four different cerebellar cell-specific mouse lines whereby the excitatory or inhibitory input to Purkinje cells (PCs) and/or PC postsynaptic plasticity were compromised, to a wide battery of standard cognitive and emotional tests. The four lines, which have all been shown to suffer from impaired motor learning without being ataxic, were tested for social behavior using a sociability task, for spatial navigation using the Morris watermaze, for fear responses using contextual and cued conditioning, and general anxiety using the open-field task. None of the four cerebellum-specific genetic perturbations showed significantly impaired cognitive or emotional behavior. In fact, even without correction for multiple comparisons, only 5 of 154 statistical comparisons showed a marginally significant deficit. Therefore, our data indicate that none of the perturbations of cerebellar functioning studied here affected the cognitive or emotional tests we used. This suggests that there may be a differential impact of the murine and human cerebellum on nonmotor functions. We hypothesize that these differences could be a consequence of the remarkable enlargement of the cerebellar hemispheres during the latest phase of vertebrate phylogeny, which occurred in parallel with the evolution of the cerebral cortex.


Assuntos
Cerebelo/citologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/citologia , Células de Purkinje/fisiologia , Transmissão Sináptica/fisiologia , Sintomas Afetivos/genética , Sintomas Afetivos/fisiopatologia , Animais , Canais de Cálcio Tipo N/deficiência , Canais de Cálcio Tipo N/metabolismo , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Condicionamento Psicológico/fisiologia , Comportamento Exploratório/fisiologia , Medo/psicologia , Feminino , Lateralidade Funcional , Regulação da Expressão Gênica/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/genética , Desempenho Psicomotor/fisiologia , Teste de Desempenho do Rota-Rod , Olfato/genética , Transmissão Sináptica/genética
6.
eNeuro ; 11(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38195533

RESUMO

Activity-dependent neuronal plasticity is crucial for animals to adapt to dynamic sensory environments. Traditionally, it has been investigated using deprivation approaches in animal models primarily in sensory cortices. Nevertheless, emerging evidence emphasizes its significance in sensory organs and in subcortical regions where cranial nerves relay information to the brain. Additionally, critical questions started to arise. Do different sensory modalities share common cellular mechanisms for deprivation-induced plasticity at these central entry points? Does the deprivation duration correlate with specific plasticity mechanisms? This study systematically reviews and meta-analyzes research papers that investigated visual, auditory, or olfactory deprivation in rodents of both sexes. It examines the consequences of sensory deprivation in homologous regions at the first central synapse following cranial nerve transmission (vision - lateral geniculate nucleus and superior colliculus; audition - ventral and dorsal cochlear nucleus; olfaction - olfactory bulb). The systematic search yielded 91 papers (39 vision, 22 audition, 30 olfaction), revealing substantial heterogeneity in publication trends, experimental methods, measures of plasticity, and reporting across the sensory modalities. Despite these differences, commonalities emerged when correlating plasticity mechanisms with the duration of sensory deprivation. Short-term deprivation (up to 1 d) reduced activity and increased disinhibition, medium-term deprivation (1 d to a week) involved glial changes and synaptic remodeling, and long-term deprivation (over a week) primarily led to structural alterations. These findings underscore the importance of standardizing methodologies and reporting practices. Additionally, they highlight the value of cross-modal synthesis for understanding how the nervous system, including peripheral, precortical, and cortical areas, respond to and compensate for sensory inputs loss.


Assuntos
Audição , Roedores , Masculino , Animais , Feminino , Transmissão Sináptica/fisiologia , Sinapses/fisiologia , Visão Ocular , Plasticidade Neuronal/fisiologia , Privação Sensorial/fisiologia
7.
J Physiol ; 588(Pt 19): 3639-55, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20581044

RESUMO

When Camillo Golgi invented the black reaction in 1873 and first described the fine anatomical structure of the nervous system, he described a 'big nerve cell' that later took his name, the Golgi cell of cerebellum ('Golgi'schen Zellen', Gustaf Retzius, 1892). The Golgi cell was then proposed as the prototype of type-II interneurons, which form complex connections and exert their actions exclusively within the local network. Santiago Ramón y Cajal (who received the Nobel Prize with Golgi in 1906) proceeded to a detailed description of Golgi cell morphological characteristics, but functional insight remained very limited for many years. The first rediscovery happened in the 1960s, when neurophysiological analysis in vivo revealed that Golgi cells are inhibitory interneurons. This finding promoted the development of two major cerebellar theories, the 'beam theory' of John Eccles and the 'motor learning theory' of David Marr, in which the Golgi cells regulate the spatial organisation and the gain of input signals to be processed and learned by the cerebellar circuit. However, the matter was not set and a series of pioneering observations using single unit recordings and electronmicroscopy raised new issues that could not be fully explored until the 1990s. Then, the advent of new electrophysiological and imaging techniques in vitro and in vivo demonstrated the cellular and network activities of these neurons. Now we know that Golgi cells, through complex systems of chemical and electrical synapses, effectively control the spatio-temporal organisation of cerebellar responses. The Golgi cells regulate the timing and number of spikes emitted by granule cells and coordinate their coherent activity. Moreover, the Golgi cells regulate the induction of long-term synaptic plasticity along the mossy fibre pathway. Eventually, the Golgi cells transform the granular layer of cerebellum into an adaptable spatio-temporal filter capable of performing several kinds of logical operation. After more than a century, Golgi's intuition that the Golgi cell had to generate under a new perspective complex ensemble effects at the network level has finally been demonstrated.


Assuntos
Cerebelo/citologia , Cerebelo/fisiologia , Neurônios/fisiologia , Animais , Biologia Celular/história , Técnicas Citológicas/história , História do Século XIX , História do Século XX , Humanos , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurologia/história , Prêmio Nobel
9.
eNeuro ; 5(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29464191

RESUMO

In many brain regions involved in learning NMDA receptors (NMDARs) act as coincidence detectors of pre- and postsynaptic activity, mediating Hebbian plasticity. Intriguingly, the parallel fiber (PF) to Purkinje cell (PC) input in the cerebellar cortex, which is critical for procedural learning, shows virtually no postsynaptic NMDARs. Why is this? Here, we address this question by generating and testing independent transgenic lines that overexpress NMDAR containing the type 2B subunit (NR2B) specifically in PCs. PCs of the mice that show larger NMDA-mediated currents than controls at their PF input suffer from a blockage of long-term potentiation (LTP) at their PF-PC synapses, while long-term depression (LTD) and baseline transmission are unaffected. Moreover, introducing NMDA-mediated currents affects cerebellar learning in that phase-reversal of the vestibulo-ocular reflex (VOR) is impaired. Our results suggest that under physiological circumstances PC spines lack NMDARs postsynaptically at their PF input so as to allow LTP to contribute to motor learning.


Assuntos
Movimentos Oculares/fisiologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Células de Purkinje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de N-Metil-D-Aspartato/genética , Reflexo/fisiologia , Sinapses/fisiologia , Técnicas de Cultura de Tecidos , Percepção Visual/fisiologia
10.
Elife ; 72018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29676260

RESUMO

Most neurogenesis in the mammalian brain is completed embryonically, but in certain areas the production of neurons continues throughout postnatal life. The functional properties of mature postnatally generated neurons often match those of their embryonically produced counterparts. However, we show here that in the olfactory bulb (OB), embryonic and postnatal neurogenesis produce functionally distinct subpopulations of dopaminergic (DA) neurons. We define two subclasses of OB DA neuron by the presence or absence of a key subcellular specialisation: the axon initial segment (AIS). Large AIS-positive axon-bearing DA neurons are exclusively produced during early embryonic stages, leaving small anaxonic AIS-negative cells as the only DA subtype generated via adult neurogenesis. These populations are functionally distinct: large DA cells are more excitable, yet display weaker and - for certain long-latency or inhibitory events - more broadly tuned responses to odorant stimuli. Embryonic and postnatal neurogenesis can therefore generate distinct neuronal subclasses, placing important constraints on the functional roles of adult-born neurons in sensory processing.


Assuntos
Segmento Inicial do Axônio/classificação , Neurônios Dopaminérgicos/classificação , Neurônios Dopaminérgicos/citologia , Neurogênese , Bulbo Olfatório/embriologia , Animais , Camundongos Endogâmicos C57BL , Fenótipo
11.
Prog Brain Res ; 210: 59-77, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24916289

RESUMO

The basic principles of cerebellar function were originally described by Flourens, Cajal, and Marr/Albus/Ito, and they constitute the pillars of what can be considered to be the classic cerebellar doctrine. In their concepts, the main cerebellar function is to control motor behavior, Purkinje cells are the only cortical neuron receiving and integrating inputs from climbing fiber and mossy-parallel fiber pathways, and plastic modification at the parallel fiber synapses onto Purkinje cells constitutes the substrate of motor learning. Yet, because of recent technical advances and new angles of investigation, all pillars of the cerebellar doctrine now face regular re-examination. In this review, after summarizing the classic concepts and recent disputes, we attempt to synthesize an integrated view and propose a revisited version of the cerebellar doctrine.


Assuntos
Cerebelo/fisiologia , Aprendizagem/fisiologia , Modelos Neurológicos , Plasticidade Neuronal/fisiologia , Animais , Humanos
12.
Neuron ; 78(4): 700-13, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23643935

RESUMO

The cerebellum fine-tunes motor activity via its Purkinje cell output. Purkinje cells produce two different types of spikes, complex spikes and simple spikes, which often show reciprocal activity: a periodical increase in complex spikes is associated with a decrease in simple spikes, and vice versa. This reciprocal firing is thought to be essential for coordinated motor behavior, yet how it is accomplished is debated. Here, we show in Ptf1a::cre;Robo3(lox/lox) mice that selectively rerouting the climbing fibers from a contralateral to an ipsilateral projection reversed the complex-spike modulation during sensory stimulation. Strikingly, modulation of simple spikes, which is supposed to be controlled by mossy fibers, reversed as well. Climbing fibers enforce this reciprocity in part by influencing activity of inhibitory interneurons, because the phase of their activity was also converted. Ptf1a::cre;Robo3(lox/lox) mice showed severe ataxia highlighting that climbing fiber input and its impact on reciprocity of Purkinje cell firing play an important role in motor coordination.


Assuntos
Ataxia/fisiopatologia , Cerebelo/metabolismo , Vias Eferentes/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Olivar/metabolismo , Células de Purkinje/metabolismo , Potenciais de Ação/fisiologia , Animais , Cerebelo/citologia , Vias Eferentes/citologia , Lateralidade Funcional , Técnicas de Introdução de Genes , Proteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/deficiência , Inibição Neural/fisiologia , Núcleo Olivar/citologia , Receptores de Superfície Celular
13.
Artigo em Inglês | MEDLINE | ID: mdl-23580075

RESUMO

Climbing fibers (CFs) originating in the inferior olive (IO) constitute one of the main inputs to the cerebellum. In the mammalian cerebellar cortex each of them climbs into the dendritic tree of up to 10 Purkinje cells (PCs) where they make hundreds of synaptic contacts and elicit the so-called all-or-none complex spikes controlling the output. While it has been proven that CFs contact molecular layer interneurons (MLIs) via spillover mechanisms, it remains to be elucidated to what extent CFs contact the main type of interneuron in the granular layer, i.e., the Golgi cells (GoCs). This issue is particularly relevant, because direct contacts would imply that CFs can also control computations at the input stage of the cerebellar cortical network. Here, we performed a systematic morphological investigation of labeled CFs and GoCs at the light microscopic level following their path and localization through the neuropil in both the granular and molecular layer. Whereas in the molecular layer the appositions of CFs to PCs and MLIs were prominent and numerous, those to cell-bodies and dendrites of GoCs in both the granular layer and molecular layer were virtually absent. Our results argue against the functional significance of direct synaptic contacts between CFs and interneurons at the input stage, but support those at the output stage.


Assuntos
Comunicação Celular/fisiologia , Cerebelo/citologia , Cerebelo/fisiologia , Fibras Nervosas/fisiologia , Animais , Cerebelo/química , Feminino , Imageamento Tridimensional/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fibras Nervosas/química , Células de Purkinje/química , Células de Purkinje/fisiologia
14.
Cell Rep ; 3(4): 1239-51, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23583179

RESUMO

Cerebellar granule cells (GCs) account for more than half of all neurons in the CNS of vertebrates. Theoretical work has suggested that the abundance of GCs is advantageous for sparse coding during memory formation. Here, we minimized the output of the majority of GCs by selectively eliminating their CaV2.1 (P/Q-type) Ca(2+) channels, which mediate the bulk of their neurotransmitter release. This resulted in reduced GC output to Purkinje cells (PCs) and stellate cells (SCs) as well as in impaired long-term plasticity at GC-PC synapses. As a consequence modulation amplitude and regularity of simple spike (SS) output were affected. Surprisingly, the overall motor performance was intact, whereas demanding motor learning and memory consolidation tasks were compromised. Our findings indicate that a minority of functionally intact GCs is sufficient for the maintenance of basic motor performance, whereas acquisition and stabilization of sophisticated memories require higher numbers of normal GCs controlling PC firing.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Cerebelo/fisiologia , Inativação Gênica , Atividade Motora/fisiologia , Animais , Axônios/metabolismo , Canais de Cálcio Tipo N/deficiência , Canais de Cálcio Tipo N/genética , Camundongos , Camundongos Knockout , Plasticidade Neuronal , Neurônios/fisiologia , Células de Purkinje/fisiologia , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa