Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Circulation ; 143(13): 1274-1286, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33517677

RESUMO

BACKGROUND: Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome, and/or systemic diseases including SARS-CoV-2-mediated coronavirus disease 2019 (COVID-19), can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead ECG algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities. METHODS: Using >1.6 million 12-lead ECGs from 538 200 patients, a deep neural network (DNN) was derived (patients for training, n = 250 767; patients for testing, n = 107 920) and validated (n = 179 513 patients) to predict the QTc using cardiologist-overread QTc values as the "gold standard". The ability of this DNN to detect clinically-relevant QTc prolongation (eg, QTc ≥500 ms) was then tested prospectively on 686 patients with genetic heart disease (50% with long QT syndrome) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L. RESULTS: In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76±23.14 ms). Similarly, within the prospective, genetic heart disease-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45±24.73 ms) and a commercial core ECG laboratory [10.52±25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively. CONCLUSIONS: Using smartphone-enabled electrodes, an AI DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital long QT syndrome in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.


Assuntos
Inteligência Artificial , Eletrocardiografia/métodos , Cardiopatias/diagnóstico , Frequência Cardíaca/fisiologia , Adulto , Idoso , Área Sob a Curva , COVID-19/fisiopatologia , COVID-19/virologia , Eletrocardiografia/instrumentação , Feminino , Cardiopatias/fisiopatologia , Humanos , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC , SARS-CoV-2/isolamento & purificação , Sensibilidade e Especificidade , Smartphone
2.
JAMA Cardiol ; 4(5): 428-436, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30942845

RESUMO

Importance: For patients with chronic kidney disease (CKD), hyperkalemia is common, associated with fatal arrhythmias, and often asymptomatic, while guideline-directed monitoring of serum potassium is underused. A deep-learning model that enables noninvasive hyperkalemia screening from the electrocardiogram (ECG) may improve detection of this life-threatening condition. Objective: To evaluate the performance of a deep-learning model in detection of hyperkalemia from the ECG in patients with CKD. Design, Setting, and Participants: A deep convolutional neural network (DNN) was trained using 1 576 581 ECGs from 449 380 patients seen at Mayo Clinic, Rochester, Minnesota, from 1994 to 2017. The DNN was trained using 2 (leads I and II) or 4 (leads I, II, V3, and V5) ECG leads to detect serum potassium levels of 5.5 mEq/L or less (to convert to millimoles per liter, multiply by 1) and was validated using retrospective data from the Mayo Clinic in Minnesota, Florida, and Arizona. The validation included 61 965 patients with stage 3 or greater CKD. Each patient had a serum potassium count drawn within 4 hours after their ECG was recorded. Data were analyzed between April 12, 2018, and June 25, 2018. Exposures: Use of a deep-learning model. Main Outcomes and Measures: Area under the receiver operating characteristic curve (AUC) and sensitivity and specificity, with serum potassium level as the reference standard. The model was evaluated at 2 operating points, 1 for equal specificity and sensitivity and another for high (90%) sensitivity. Results: Of the total 1 638 546 ECGs, 908 000 (55%) were from men. The prevalence of hyperkalemia in the 3 validation data sets ranged from 2.6% (n = 1282 of 50 099; Minnesota) to 4.8% (n = 287 of 6011; Florida). Using ECG leads I and II, the AUC of the deep-learning model was 0.883 (95% CI, 0.873-0.893) for Minnesota, 0.860 (95% CI, 0.837-0.883) for Florida, and 0.853 (95% CI, 0.830-0.877) for Arizona. Using a 90% sensitivity operating point, the sensitivity was 90.2% (95% CI, 88.4%-91.7%) and specificity was 63.2% (95% CI, 62.7%-63.6%) for Minnesota; the sensitivity was 91.3% (95% CI, 87.4%-94.3%) and specificity was 54.7% (95% CI, 53.4%-56.0%) for Florida; and the sensitivity was 88.9% (95% CI, 84.5%-92.4%) and specificity was 55.0% (95% CI, 53.7%-56.3%) for Arizona. Conclusions and Relevance: In this study, using only 2 ECG leads, a deep-learning model detected hyperkalemia in patients with renal disease with an AUC of 0.853 to 0.883. The application of artificial intelligence to the ECG may enable screening for hyperkalemia. Prospective studies are warranted.


Assuntos
Aprendizado Profundo , Eletrocardiografia/instrumentação , Hiperpotassemia/diagnóstico , Programas de Rastreamento/instrumentação , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/fisiopatologia , Inteligência Artificial , Feminino , Humanos , Hiperpotassemia/sangue , Hiperpotassemia/epidemiologia , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Prevalência , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Estudos Retrospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa