Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 92: 117439, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37579526

RESUMO

Vincamine is a naturally occurring indole alkaloid showing antioxidant activity and has been used clinically for the prevention and treatment of cerebrovascular disorders and insufficiencies. It has been well documented that antioxidants may contribute to cancer treatment, and thus, vincamine has been investigated recently for its potential antitumor activity. Vincamine was found to show cancer cell cytotoxicity and to modulate several important proteins involved in tumor growth, including acetylcholinesterase (AChE), mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and T-box 3 (TBX3). Several bisindole alkaloids, including vinblastine and vincristine and their synthetic derivatives, vindesine, vinflunine, and vinorelbine, have been used as clinically effective cancer chemotherapeutic agents. In the present review, the discovery and development of vincamine as a useful therapeutic agent and its antioxidant and antitumor activity are summarized, with its antioxidant-related mechanisms of anticancer potential being described. Also, discussed herein are the design of the potential vincamine-based oncolytic agents, which could contribute to the discovery of further new agents for cancer treatment.


Assuntos
Antineoplásicos , Vincamina , Vasodilatadores , Antioxidantes/farmacologia , Acetilcolinesterase , Antineoplásicos/farmacologia
2.
J Am Chem Soc ; 141(18): 7365-7375, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31020835

RESUMO

Much of the recent work on catalytic hydroboration of alkenes has focused on simple alkenes and styrene derivatives with few examples of reactions of 1,3-dienes, which have been reported to undergo mostly 1,4-additions to give allylic boronates. We find that reduced cobalt catalysts generated from 1,n- bis-diphenylphosphinoalkane complexes [Ph2P-(CH2) n-PPh2]CoX2; n = 1-5) or from (2-oxazolinyl)phenyldiarylphosphine complexes [(G-PHOX)CoX2] (G = 4-substituent on oxazoline ring) effect selective 1,2-, 1,4-, or 4,3-additions of pinacolborane (HBPin) to a variety of 1,3-dienes depending on the ligands chosen. Conditions have been found to optimize the 1,2-additions. The reactive catalysts can be generated from the cobalt(II)-complexes using trimethylaluminum, methyl aluminoxane, or activated zinc in the presence of sodium tetrakis[(3,5-trifluoromethyl)phenyl]borate (NaBARF). The complex, (dppp)CoCl2, gives the best results (ratio of 1,2- to 1,4-addition >95:5) for a variety of linear terminal 1,3-dienes and 2-substituted 1,3-dienes. The [(PHOX)CoX2] (X = Cl, Br) complexes give mostly 1,4-addition with linear unsubstituted 1,3-dienes, but, surprisingly, selective 1,2-additions with 2-substituted or 2,3-disubstituted 1,3-dienes. Isolated and fully characterized (X-ray crystallography) Co(I)-complexes, (dppp)3Co2Cl2 and [( S,S)-BDPP]3Co2Cl2, do not catalyze the reaction unless activated by a Lewis acid or NaBARF, suggesting a key role for a cationic Co(I) species in the catalytic cycle. Regio- and enantioselective 1,2-hydroborations of 2-substituted 1,3-dienes are best accomplished using a catalyst prepared via activation of a chiral phosphinooxazoline-cobalt(II) complex with zinc and NaBARF. A number of common functional groups, among them, -OBn, -OTBS, -OTs, N-phthalimido- groups, are tolerated, and er's > 95:5 are obtained for several dienes including 1-alkenylcycloalk-1-enes. This operationally simple reaction expands the realm of asymmetric hydroboration to provide direct access to a number of nearly enantiopure homoallylic boronates, which are not readily accessible by current methods. The resulting boronates have been converted into the corresponding alcohols, potassium trifluororoborate salts, N-BOC amines, and aryl derivatives by C-BPin to C-aryl transformation.


Assuntos
Alcadienos/química , Boranos/síntese química , Cobalto/química , Compostos Organometálicos/química , Boranos/química , Catálise , Cátions/química , Estrutura Molecular , Estereoisomerismo
3.
J Nat Prod ; 82(9): 2529-2536, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31465222

RESUMO

Four new metabolites, 4-epi-citreoviridin (1), auransterol (3), and two analogues (2 and 4) of paxisterol (6), together with two known metabolites (15R*,20S*)-dihydroxyepisterol (5) and (6), were isolated from cultures of the fungal associate, Penicillium aurantiacobrunneum, of the lichen Niebla homalea, endemic to California and Baja California. The structures of all compounds were determined by comprehensive spectroscopic and spectrometric methods, as well as single-crystal X-ray diffraction for the determination of the absolute configuration of 3. Compound 1 showed selective cytotoxicity toward MCF-7 breast and A2780 ovarian cells with IC50 values of 4.2 and 5.7 µM, respectively.


Assuntos
Fungos/isolamento & purificação , Líquens/microbiologia , Penicillium/química , Pironas/química , Esteróis/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Pironas/farmacologia , Análise Espectral/métodos , Esteróis/farmacologia
4.
J Nat Prod ; 81(3): 554-561, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29350920

RESUMO

The molecular structures of three parthenolide analogues, (-)-goyazensolide (1), (-)-15-deoxygoyazensolide (2), and (-)-ereglomerulide (3), isolated from the leaves of Piptocoma rufescens in a previous study were determined by X-ray analysis, and the absolute configuration of (-)-goyazensolide (1) was confirmed crystallographically using Cu Kα radiation at low temperature. Compounds 1-3, (+)-rufesolide A (4), and commercial parthenolide were found to be growth inhibitory toward MOLM-13 and EOL-1 human acute myeloid leukemia cells using PKC412 (midostaurin) as the positive control, with 1-3 being more active than parthenolide. Also, compounds 1-4 exhibited synergistic effects when tested with PKC412, but parthenolide did not show this type of activity. At a concentration lower than 2.0 µM, both 1 and 2 induced approximately 50% of the cells to become apoptotic at a late stage of the cell cycle, but no similar apoptotic effects were observed for 3, 4, or parthenolide. Leukemia cell apoptosis was induced by these compounds through the activation of caspase-3 and the inhibition of NF-κB, as indicated by immunoblotting analysis, and compounds 1 and 2 seem to be promising leads for development as potential antileukemic agents.


Assuntos
Apoptose/efeitos dos fármacos , Asteraceae/química , Sesquiterpenos/química , Sesquiterpenos/farmacologia , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , NF-kappa B/metabolismo
5.
J Am Chem Soc ; 139(49): 18034-18043, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29120629

RESUMO

1,3-Dienes are ubiquitous and easily synthesized starting materials for organic synthesis, and alkyl acrylates are among the most abundant and cheapest feedstock carbon sources. A practical, highly enantioselective union of these two readily available precursors giving valuable, enantio-pure skipped 1,4-diene esters (with two configurationally defined double bonds) is reported. The process uses commercially available cobalt salts and chiral ligands. As illustrated by the use of 20 different substrates, including 17 prochiral 1,3-dienes and 3 acrylates, this hetero-dimerization reaction is tolerant of a number of common organic functional groups (e.g., aromatic substituents, halides, isolated mono- and di-substituted double bonds, esters, silyl ethers, and silyl enol ethers). The novel results including ligand, counterion, and solvent effects uncovered during the course of these investigations show a unique role of a possible cationic Co(I) intermediate in these reactions. The rational evolution of a mechanism-based strategy that led to the eventual successful outcome and the attendant support studies may have further implications for the expanding use of low-valent group 9 metal complexes in organic synthesis.


Assuntos
Acrilatos/química , Polienos/química , Catálise , Cobalto/química , Dimerização , Ésteres/química , Éteres/química , Ligantes
6.
J Am Chem Soc ; 139(41): 14724-14732, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28976191

RESUMO

The new heteroleptic paddlewheel complexes cis-[Rh2(µ-form)2(µ-np)2][BF4]2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh2(µ-form)2(µ-npCOO)2 (npCOO- = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λmax = 300 nm, ε = 20 300 M-1 cm-1) and visible regions (λmax = 640 nm ε = 3500 M-1 cm-1), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were used to characterize the identity and dynamics of the excited states, where singlet and triplet Rh2/form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO- complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E(3ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ∼800 nm.

7.
Inorg Chem ; 56(3): 1433-1445, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28075120

RESUMO

Four photophysically interesting dimolybdenum paddlewheel compounds are synthesized and characterized: I and II contain amide ligand (N,3-diphenyl-2-propynamide), and III and IV contain thioamide ligand (N,3-diphenyl-2-propynethioamide). I and III are trans-Mo2L2(O2C-TiPB)2-type compounds, and II and IV are Mo2L4-type compounds, where O2C-TiPB is 2,4,6-triisopropylbenzoate. I-IV display strong light absorption due to metal to ligand charge transfer (MLCT) transitions from molybdenum to the amide/thioamide ligands. Charge transfer dynamics in the MLCT excited states of I-IV have been examined using femtosecond transient absorption (fs-TA) spectroscopy and femtosecond time-resolved infrared (fs-TRIR) spectroscopy. The asymmetric amide/thioamide ligands show two forms of regioarrangements in the paddlewheel compounds. Analyses of the ν(C≡C) bands in the fs-TRIR spectra of I and II show similar electron density distribution over ligands in their 1MLCT S1 states where only two amide ligands are involved and the transferred electron is mainly localized on one of them. The fs-TRIR spectra of III and IV, however, show different charge distribution patterns where the transferred electron is fully delocalized over two thioamide ligands in III and partially delocalized in IV. Fast interligand electron transfer (ILET) was recognized as the explanation for the various charge distribution patterns, and ILET was shown to be influenced by both the ligands and the ligand arrangements.

8.
Inorg Chem ; 56(16): 9660-9668, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28783352

RESUMO

The interligand charge dynamics of the lowest singlet metal-to-ligand charge-transfer states (1MLCT S1 states) of a series of quadruply bonded trans-Mo2(NN)2(O2C-X)2 paddlewheel compounds are investigated, where NN is a π-accepting phenylpropiolamidinate ligand and O2C-X (X = Me, tBu, TiPB, or CF3) is an auxiliary carboxylate ligand. The compounds show strong light absorption in the visible region due to MLCT transitions from the Mo2 center to the NN ligands. The transferred electron density was followed by femtosecond time-resolved infrared (fs-TRIR) spectroscopy with vibrational reporters such as the ethynyl groups on the NN ligands. The observed fs-TRIR spectra show that these compounds have asymmetric 1MLCT S1 excited states where the transferred electron mainly resides on a single NN ligand. The presence of interligand electron transfer (ILET) is suggested to explain the shape of the ν(C≡C) bands and the influence of auxiliary ligands and solvents on the interligand electronic coupling. The ILET in the 1MLCT S1 state is shown to be sensitive to the functional groups on the auxiliary ligands while being less responsive to changes in solvents.

9.
Planta Med ; 83(14-15): 1194-1199, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28427102

RESUMO

Over the past half a century, the structure and configuration of the rotenoids, a group of natural products showing multiple promising bioactivities, have been established by interpretation of their NMR and electronic circular dichroism spectra and confirmed by analysis of single-crystal X-ray diffraction data. The chemical shift of the H-6' 1H NMR resonance has been found to be an indicator of either a cis or trans C/D ring system. In the present study, four structures representing the central rings of a cis-, a trans-, a dehydro-, and an oxadehydro-rotenoid have been plotted using the Mercury program based on X-ray crystal structures reported previously, with the conformations of the C/D ring system, the local bond lengths or interatomic distances, hydrogen bond angles, and the H-6' chemical shift of these compounds presented. It is shown for the first time that a trans-fused C/D ring system of rotenoids is preferred for the formation of a potential intramolecular C6'-H6'•••O=C4 H-bond, and that such H-bonding results in the 1H NMR resonance for H-6' being shifted downfield.


Assuntos
Millettia/química , Modelos Moleculares , Rotenona/química , Cristalografia por Raios X , Frutas/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Conformação Molecular , Difração de Raios X
10.
Chemistry ; 20(24): 7325-33, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24788403

RESUMO

Attempts to synthesize solvent-free MgB12H12 by heating various solvated forms (H2O, NH3, and CH3OH) of the salt failed because of the competition between desolvation and dehydrogenation. This competition has been studied by thermogravimetric analysis (TGA) and temperature-programmed desorption (TPD). Products were characterized by IR, solution- and solid-state NMR spectroscopy, elemental analysis, and single-crystal or powder X-ray diffraction analysis. For hydrated salts, thermal decomposition proceeded in three stages, loss of water to form first hexahydrated then trihydrated, and finally loss of water and hydrogen to form polyhydroxylated complexes. For partially ammoniated salts, two stages of thermal decomposition were observed as ammonia and hydrogen were released with weight loss first of 14 % and then 5.5 %. Thermal decomposition of methanolated salts proceeded through a single step with a total weight loss of 32 % with the release of methanol, methane, and hydrogen. All the gaseous products of thermal decomposition were characterized by using mass spectrometry. Residual solid materials were characterized by solid-state (11)B magic-angle spinning (MAS) NMR spectroscopy and X-ray powder diffraction analysis by which the molecular structures of hexahydrated and trihydrated complexes were solved. Both hydrogen and dihydrogen bonds were observed in structures of [Mg(H2O)6B12H12]⋅6 H2O and [Mg(CH3OH)6B12H12]⋅6 CH3OH, which were determined by single-crystal X-ray diffraction analysis. The structural factors influencing thermal decomposition behavior are identified and discussed. The dependence of dehydrogenation on the formation of dihydrogen bonds may be an important consideration in the design of solid-state hydrogen storage materials.

11.
J Nat Prod ; 77(6): 1494-504, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24937209

RESUMO

Two new (1 and 2) and four known arylnaphthalene lignan lactones (3-6) were isolated from different plant parts of Phyllanthus poilanei collected in Vietnam, with two further known analogues (7 and 8) being prepared from phyllanthusmin C (4). The structures of the new compounds were determined by interpretation of their spectroscopic data and by chemical methods, and the structure of phyllanthusmin D (1) was confirmed by single-crystal X-ray diffraction analysis. Several of these arylnaphthalene lignan lactones were cytotoxic toward HT-29 human colon cancer cells, with compounds 1 and 7-O-[(2,3,4-tri-O-acetyl)-α-L-arabinopyranosyl)]diphyllin (7) found to be the most potent, exhibiting IC50 values of 170 and 110 nM, respectively. Compound 1 showed activity when tested in an in vivo hollow fiber assay using HT-29 cells implanted in immunodeficient NCr nu/nu mice. Mechanistic studies showed that this compound mediated its cytotoxic effects by inducing tumor cell apoptosis through activation of caspase-3, but it did not inhibit DNA topoisomerase IIα activity.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Lactonas/isolamento & purificação , Lactonas/farmacologia , Lignanas/isolamento & purificação , Lignanas/farmacologia , Naftalenos/isolamento & purificação , Naftalenos/farmacologia , Phyllanthus/química , Animais , Antineoplásicos Fitogênicos/química , Benzodioxóis/química , Caspase 3/efeitos dos fármacos , DNA Topoisomerases Tipo I/efeitos dos fármacos , DNA Topoisomerases Tipo I/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Células HT29 , Humanos , Lactonas/química , Lignanas/química , Camundongos , Estrutura Molecular , Naftalenos/química , Ressonância Magnética Nuclear Biomolecular , Vietnã
12.
Proc Natl Acad Sci U S A ; 108(20): 8152-6, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21525414

RESUMO

The singlet S(1) and triplet T(1) photoexcited states of the compounds containing MM quadruple bonds trans-M(2)(T(i)PB)(2)(O(2)CC(6)H(4)-4-CN)(2), where T(i)PB = 2,4,6-triisopropylbenzoate and M = Mo (I) or M = W (I(')), and trans-M(2)(O(2)CMe)(2)((N[(i) Pr ])(2)CC ≡ CC(6)H(5))(2), where M = Mo (II) and M = W (II(')), have been investigated by a variety of spectroscopic techniques including femtosecond time-resolved infrared spectroscopy. The singlet states are shown to be delocalized metal-to-ligand charge transfer (MLCT) states for I and I(') but localized for II and II(') involving the cyanobenzoate or amidinate ligands, respectively. The triplet states are MoMoδδ* for both I and II but delocalized (3)MLCT for I(') and localized (3)MLCT for II('). These differences arise from consideration of the relative orbital energies of the M(2)δ or M(2)δ* and the ligand π(∗) as well as the magnitudes of orbital overlap.

13.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 2): o190, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24764901

RESUMO

In the title mol-ecule, C24H21NO2, the dihedral angle between the carbazole ring system [with a maximum deviation of 0.052 (2) Å] and the benzene ring is 38.6 (1)°. In the crystal, weak bifurcated (C-H)2⋯O hydrogen bonds link the mol-ecules into chains along [100].

14.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 3): o332, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24765027

RESUMO

In the title mol-ecule, C21H20N2O2S, the dihedral angle between the mean plane of the carbazole ring system [maximum deviation = 0.021 (4) Å] and the benzene ring is 80.15 (6)°. In the crystal, mol-ecules are linked by N-H⋯O and weak C-H⋯O hydrogen bonds into a C(8) chain along [001].

15.
Inorg Chem ; 52(19): 11302-10, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24066833

RESUMO

The complexes (BDI)MgX(THF), where X = Bu(n), NEt2, and OBu(t), are shown to undergo THF exchange at low added concentrations of THF by a dissociative mechanism: X = Bu(n), ΔH(#) (kcal mol(-1)) = 13.4 ± 0.4 and ΔS(#) (cal mol(-1) K(-1)) = 6.3 ± 1.6; X = NEt2, ΔH(#) (kcal mol(-1)) = 15.2 ± 0.5 and ΔS(#) (cal mol(-1) K(-1)) = 11.4 ± 2.3; X = OBu(t), ΔH(#) (kcal mol(-1)) = 16.4 ± 0.3 and ΔS(#) (cal mol(-1) K(-1)) = 9.5 ± 1.3. The apparent aryl group rotations involving the BDI ligands have, within experimental error, the same activation parameters as the THF dissociation, which suggests that the two are correlated involving a three coordinate reactive intermediate akin to what is well-known for related (BDI)ZnR compounds involving three-coordinate trigonal planar Zn(2+). At higher concentrations of THF for X = Bu(n) and OBu(t), but not for X = NEt2, the coalescence temperatures for apparent aryl group rotation are depressed from those of the pure compounds in toluene-d8, and evidence is presented that this correlates with an associative interchange process which becomes dominant in neat THF. We estimate the Ia mechanism to have activation parameters: ΔH(#) (kcal mol(-1)) = 5.4 ± 0.1 and ΔS(#) (cal mol(-1) K(-1)) = -20.9 ± 0.3 for X = Bu(n) and ΔH(#) (kcal mol(-1)) = 8.3 ± 0.8 and ΔS(#) (cal mol(-1) K(-1)) = -19.8 ± 3.0 for X = OBu(t). For the complex (BDI)MgBu(n)(2-MeTHF), the dissociative exchange with added 2-MeTHF occurs more readily than for its THF analogue, as expected for the more sterically demanding Lewis base O-donor: ΔH(#) (kcal mol(-1)) = 12.8 ± 0.5 and ΔS(#) (cal mol(-1) K(-1)) = 8.6 ± 1.8. At very low temperatures in toluene-d8, restricted rotation about the Mg-O(THF) bond is observed for the complexes where X = NEt2 and OBu(t) but not for the complex where X = Bu(n). These observations, which have been determined from dynamic NMR studies, are correlated with the reactivities of these complexes in solution.

16.
Inorg Chem ; 51(21): 11882-90, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23098289

RESUMO

Two new dirhodium complexes, the head-to-tail (H,T) and head-to-head (H,H) isomers of cis-[Rh(2)(HNOCCH(3))(2)(CH(3)CN)(6)](2+), were synthesized, separated, and characterized following the reaction of Rh(2)(HNOCCH(3))(4) with trimethyloxonium tetrafluoroborate in CH(3)CN. The products were characterized by (1)H NMR spectroscopy, mass spectrometry, elemental analysis, and single crystal X-ray diffraction. Each bis-amidato isomer has a total of six CH(3)CN ligands, two along the internuclear Rh-Rh axis, CH(3)CN(ax), two in equatorial positions trans to the oxygen atoms of the bridging amidato groups, CH(3)CN(eq)(O), and two in equatorial positions trans to the amidato nitrogen atoms, CH(3)CN(eq)(N). When aqueous solutions of the complexes are irradiated with low energy light (λ(irr) ≥ 495 nm, 60 min), both types of CH(3)CN(eq) ligands undergo efficient ligand exchange with solvent H(2)O molecules to form monoaqua, followed by bis-aqua, adducts, releasing two CH(3)CN(eq) ligands in the process. The quantum yields, Φ(400nm), for the H,T and H,H isomers to form monoaqua adducts are 0.43 and 0.38, respectively, which are substantially greater than the 0.13 yield observed for cis-[Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+); importantly, no ligand exchange is observed when the complexes are kept in the dark. Finally, low energy excitation (λ(irr) ≥ 610 nm, 30 min) of the H,T isomer was shown to generate photoproducts that covalently bind to linearized DNA, making 2 a potential agent for photochemotherapy that does not require the formation of (1)O(2), as is typical of organic photodynamic therapy (PDT) agents.


Assuntos
Complexos de Coordenação/química , DNA/metabolismo , Fármacos Fotossensibilizantes/química , Ródio/química , Amidas/síntese química , Amidas/química , Amidas/farmacologia , Sítios de Ligação , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Isomerismo , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fotólise , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Ródio/farmacologia
17.
Inorg Chem ; 51(24): 13430-6, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23215030

RESUMO

New convenient procedures for the preparation of ammonia monochloroborane (NH(3)BH(2)Cl) and cyclotriborazane [(BH(2)NH(2))(3)] are described. Crystal structures have been determined by single-crystal X-ray diffraction. Strong H···Cl···H bifurcated hydrogen bonding and weak N-H···H dihydrogen bonding are observed in the crystal structure of ammonia monochloroborane. When heated at 50 °C or under vacuum, ammonia monochloroborane decomposes to (NH(2)BHCl)(x), which was characterized by NMR, elemental analysis, and powder X-ray diffraction. Redetermination of the crystal structure of cyclotriborazane at low temperature by single-crystal X-ray diffraction analysis provides accurate hydrogen positions. Similar to ammonia borane, cyclotriborazane shows extensive dihydrogen bonding of N-H···H and B-H···H bonds with H(δ+)···H(δ-) interactions in the range of 2.00-2.34 Å.

18.
Tetrahedron ; 68(12): 2671-2678, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22685350

RESUMO

Six new (1-6) and eight known germacranolide-type sesquiterpene lactones, along with several known phenylpropanol coumarates and methylated flavonoids, were isolated from the leaves of Piptocoma rufescens, collected in the Dominican Republic. The new compounds were identified by analysis of their spectroscopic data, with the molecular structure of 3 being established by single-crystal X-ray diffraction. The absolute configurations of the sesquiterpene lactones isolated were determined from their CD and NOESY NMR spectra, together with the analysis of Mosher ester reactions. Bioassay screening results showed the majority of the sesquiterpene lactones isolated (1-13) to be highly cytotoxic toward the HT-29 human colon cancer cell line, with the most potent compound being 15-deoxygoyazensolide (10, IC(50), 0.26 µM). In addition, several of the sesquiterpene lactones exhibited NF-κB (p65) inhibitory activity.

19.
J Am Chem Soc ; 133(15): 5873-81, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21434631

RESUMO

The reaction between W(2)(T(i)PB)(4), where T(i)PB = 2,4,6-triisopropylbenzoate, and 2 equiv of 4-isonicotinic acid (nicH) yields the compound W(2)(T(i)PB)(2)(nic)(2), 2, and T(i)PBH. Compound 2 is related to the previously reported molybdenum analog, Mo(2)(T(i)PB)(2)(nic)(2), 1. Compounds 1 and 2 react with 2 equiv of B(C(6)F(5))(3) in THF to form the adducts M(2)(T(i)PB)(2)(nic-B(C(6)F(5))(3))(2), 1B (M = Mo) and 2B (M = W), which have been crystallographically characterized as solvates M(2)(T(i)PB)(2)(nic-B(C(6)F(5))(3))(2)·2THF n-hexane. Compounds 1 and 2 are intensely colored due to M(2) δ to π* MLCT transitions, and upon complexation with B(C(5)F(5))(3) to give 1B and 2B, these bands shift to lower energy and gain in intensity. Each compound shows two one-electron ligand-based reductions with a ΔE(1/2) = 120 (1), 300 (1B), 440 (2), and 650 mV (2B). The larger ΔE(1/2) values for the tungsten compounds reflect the greater orbital mixing of the metal 5d-based M(2) δ and the nic π* LUMO. Reduction of solutions of 1B and 2B with (C(5)Me(5))(2)Co leads to the anions 1B(-) and 2B(-), which have been characterized spectroscopically by electron paramagnetic resonance (EPR) and UV-vis-NIR absorption. The EPR spectra of 1B(-) and 2B(-) are consistent with ligand-based (i.e., organic) radicals. The electronic spectra contain low-energy narrow charge resonance (IVCT) bands at 3800 (1B(-)) and 4500 cm(-1) (2B(-)), consistent with fully delocalized mixed valence radical anions. The results are compared with electronic structure calculations and with the spectral features of the metal-centered delocalized mixed valence radical cations [(Bu(t)CO(2))(3)M(2)](2)-µ(2)-(O(2)C-CO(2))(+), to which they are remarkably similar, as well as with other organic-based mixed valence systems.

20.
Inorg Chem ; 50(19): 9213-5, 2011 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-21879748

RESUMO

The cation cis-[Ru(bpy)(2)(5CNU)(2)](2+) (bpy = 2,2'-bipyridine; 5CNU = 5-cyanouracil) was synthesized and investigated for use as a potential light-activated dual-action therapeutic agent. The complex undergoes efficient photoinduced 5CNU ligand exchange for solvent water molecules, thus simultaneously releasing biologically active 5CNU and generating [Ru(bpy)(2)(H(2)O)(2)](2+). The latter binds covalently to ds-DNA, such that photolysis results in the generation of 3 equiv of potential therapeutic agents from a single molecule.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio/química , 2,2'-Dipiridil/química , Complexos de Coordenação/síntese química , DNA/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Compostos Organometálicos/síntese química , Fotólise , Espectrofotometria Ultravioleta , Uracila/análogos & derivados , Uracila/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa