Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Plant J ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080917

RESUMO

Photosynthetic and chemosynthetic extremophiles have evolved adaptations to thrive in challenging environments by finely adjusting their metabolic pathways through evolutionary processes. A prime adaptation target to allow autotrophy in extreme conditions is the enzyme Rubisco, which plays a central role in the conversion of inorganic to organic carbon. Here, we present an extensive compilation of Rubisco kinetic traits from a wide range of species of bacteria, archaea, algae, and plants, sorted by phylogenetic group, Rubisco type, and extremophile type. Our results show that Rubisco kinetics for the few extremophile organisms reported up to date are placed at the margins of the enzyme's natural variability. Form ID Rubisco from thermoacidophile rhodophytes and form IB Rubisco from halophile terrestrial plants exhibit higher specificity and affinity for CO2 than their non-extremophilic counterparts, as well as higher carboxylation efficiency, whereas form ID Rubisco from psychrophile organisms possess lower affinity for O2. Additionally, form IB Rubisco from thermophile cyanobacteria shows enhanced CO2 specificity when compared to form IB non-extremophilic cyanobacteria. Overall, these findings highlight the unique characteristics of extremophile Rubisco enzymes and provide useful clues to guide next explorations aimed at finding more efficient Rubiscos.

2.
New Phytol ; 241(6): 2353-2365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197185

RESUMO

The kinetic properties of Rubisco, the most important carbon-fixing enzyme, have been assessed in a small fraction of the estimated existing biodiversity of photosynthetic organisms. Until recently, one of the most significant gaps of knowledge in Rubisco kinetics was marine macrophytes, an ecologically relevant group including brown (Ochrophyta), red (Rhodophyta) and green (Chlorophyta) macroalgae and seagrasses (Streptophyta). These organisms express various Rubisco types and predominantly possess CO2 -concentrating mechanisms (CCMs), which facilitate the use of bicarbonate for photosynthesis. Since bicarbonate is the most abundant form of dissolved inorganic carbon in seawater, CCMs allow marine macrophytes to overcome the slow gas diffusion and low CO2 availability in this environment. The present review aims to compile and integrate recent findings on the biochemical diversity of Rubisco and CCMs in the main groups of marine macrophytes. The Rubisco kinetic data provided demonstrate a more relaxed relationship among catalytic parameters than previously reported, uncovering a variability in Rubisco catalysis that has been hidden by a bias in the literature towards terrestrial vascular plants. The compiled data indicate the existence of convergent evolution between Rubisco and biophysical CCMs across the polyphyletic groups of marine macrophytes and suggest a potential role for oxygen in shaping such relationship.


Assuntos
Dióxido de Carbono , Diatomáceas , Ribulose-Bifosfato Carboxilase/metabolismo , Bicarbonatos , Diatomáceas/metabolismo , Fotossíntese , Carbono
3.
Plant Physiol ; 191(2): 946-956, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36315095

RESUMO

The CO2-fixing enzyme Ribulose bisphosphate carboxylase-oxygenase (Rubisco) links the inorganic and organic phases of the global carbon cycle. In aquatic systems, the catalytic adaptation of algae Rubiscos has been more expansive and followed an evolutionary pathway that appears distinct to terrestrial plant Rubisco. Here, we extend this survey to differing seagrass species of the genus Posidonia to reveal how their disjunctive geographical distribution and diverged phylogeny, along with their CO2 concentrating mechanisms (CCMs) effectiveness, have impacted their Rubisco kinetic properties. The Rubisco from Posidonia species showed lower carboxylation efficiencies and lower sensitivity to O2 inhibition than those measured for terrestrial C3 and C4-plant Rubiscos. Compared with the Australian Posidonia species, Rubisco from the Mediterranean Posidonia oceanica had 1.5-2-fold lower carboxylation and oxygenation efficiencies, coinciding with effective CCMs and five Rubisco large subunit amino acid substitutions. Among the Australian Posidonia species, CCM effectiveness was higher in Posidonia sinuosa and lower in the deep-living Posidonia angustifolia, likely related to the 20%-35% lower Rubisco carboxylation efficiency in P. sinuosa and the two-fold higher Rubisco content in P. angustifolia. Our results suggest that the catalytic evolution of Posidonia Rubisco has been impacted by the low CO2 availability and gas exchange properties of marine environments, but with contrasting Rubisco kinetics according to the time of diversification among the species. As a result, the relationships between maximum carboxylation rate and CO2- and O2-affinities of Posidonia Rubiscos follow an alternative path to that characteristic of terrestrial angiosperm Rubiscos.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Austrália , Filogenia , Plantas/metabolismo , Fotossíntese , Cinética
4.
J Exp Bot ; 75(7): 2013-2026, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38173309

RESUMO

One of the well-documented effects of regional warming in Antarctica is the impact on flora. Warmer conditions modify several leaf anatomical traits of Antarctic vascular plants, increasing photosynthesis and growth. Given that CO2 and water vapor partially share their diffusion pathways through the leaf, changes in leaf anatomy could also affect the hydraulic traits of Antarctic plants. We evaluated the effects of growth temperature on several anatomical and hydraulic parameters of Antarctic plants and assessed the trait co-variation between these parameters and photosynthetic performance. Warmer conditions promoted an increase in leaf and whole plant hydraulic conductivity, correlating with adjustments in carbon assimilation. These adjustments were consistent with changes in leaf vasculature, where Antarctic species displayed different strategies. At higher temperature, Colobanthus quitensis decreased the number of leaf xylem vessels, but increased their diameter. In contrast, in Deschampsia antarctica the diameter did not change, but the number of vessels increased. Despite this contrasting behavior, some traits such as a small leaf diameter of vessels and a high cell wall rigidity were maintained in both species, suggesting a water-conservation response associated with the ability of Antarctic plants to cope with harsh environments.


Assuntos
Fotossíntese , Folhas de Planta , Temperatura , Regiões Antárticas , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Plantas
5.
Transgenic Res ; 33(3): 119-130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713283

RESUMO

This paper reports the first coexistence field trials between transgenic and conventional maize carried out under Mediterranean island conditions. Their purpose was to assess the local validity of pollen barriers and sowing delays as coexistence strategies as a basis for a regional regulation on the subject. Two field trials were performed in two agricultural states of Alcudia and Palma, in Mallorca (Spain). In the first one, two adjacent plots were synchronously sown with conventional and transgenic maize, respectively. In the second trial, the previous design was replicated, and two additional plots sown with GM maize were added, paired with their respective conventional recipient plots sown 2 and 4 weeks later. All conventional plots were located downwind from their respective GM plots. Of the two conventional plots in sowing synchrony, only one of them required a 2.25 m pollen barrier to meet the 0.9% labeling threshold. A 4-week sowing delay between GM and non-GM plots proved to be enough to keep the GM content of the recipient plots below the legal threshold. However, with a 2-week sowing delay additional coexistence measures such as pollen barriers might be needed, as suggested in the literature. Results are consistent with previous research conducted in the northeast of Spain, thus validating in the island's agroclimatic conditions a model successfully tested in that peninsular region which allows to accurately estimate the need and width of pollen barriers. The results presented here could perhaps be extrapolated to other islands, coastal areas, and regions with stable prevailing winds during the maize flowering season.


Assuntos
Edição de Genes , Plantas Geneticamente Modificadas , Pólen , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Espanha , Pólen/genética , Agricultura/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
6.
Am Nat ; 201(6): 794-812, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37229708

RESUMO

AbstractQuantifying the relative contribution of functional and developmental constraints on phenotypic variation is a long-standing goal of macroevolution, but it is often difficult to distinguish different types of constraints. Alternatively, selection can limit phenotypic (co)variation if some trait combinations are generally maladaptive. The anatomy of leaves with stomata on both surfaces (amphistomatous) present a unique opportunity to test the importance of functional and developmental constraints on phenotypic evolution. The key insight is that stomata on each leaf surface encounter the same functional and developmental constraints but potentially different selective pressures because of leaf asymmetry in light capture, gas exchange, and other features. Independent evolution of stomatal traits on each surface imply that functional and developmental constraints alone likely do not explain trait covariance. Packing limits on how many stomata can fit into a finite epidermis and cell size-mediated developmental integration are hypothesized to constrain variation in stomatal anatomy. The simple geometry of the planar leaf surface and knowledge of stomatal development make it possible to derive equations for phenotypic (co)variance caused by these constraints and compare them with data. We analyzed evolutionary covariance between stomatal density and length in amphistomatous leaves from 236 phylogenetically independent contrasts using a robust Bayesian model. Stomatal anatomy on each surface diverges partially independently, meaning that packing limits and developmental integration are not sufficient to explain phenotypic (co)variation. Hence, (co)variation in ecologically important traits like stomata arises in part because there is a limited range of evolutionary optima. We show how it is possible to evaluate the contribution of different constraints by deriving expected patterns of (co)variance and testing them using similar but separate tissues, organs, or sexes.


Assuntos
Magnoliopsida , Estômatos de Plantas , Estômatos de Plantas/anatomia & histologia , Magnoliopsida/anatomia & histologia , Teorema de Bayes , Folhas de Planta/anatomia & histologia , Fenótipo
7.
New Phytol ; 237(6): 2027-2038, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36385703

RESUMO

Seaweeds have a wide ecophysiological and phylogenetic diversity with species expressing different Rubisco forms that frequently coexist with biophysical CO2 concentrating mechanisms (CCMs), an adaptation that overcomes the low CO2 availability and gas diffusion in seawater. Here, we assess the possible coevolution between the Rubisco catalysis and the type and effectiveness of CCMs present in six upper subtidal macroalgal species belonging to three phylogenetic groups of seaweeds. A wide diversity in the Rubisco kinetic traits was found across the analyzed species, although the specificity factor was the only parameter explained by the expressed Rubisco form. Differences in the catalytic trade-offs were found between Rubisco forms, indicating that ID Rubiscos could be better adapted to the intracellular O2  : CO2 ratio found in marine organisms during steady-state photosynthesis. The biophysical components of the CCMs also differed among macroalgal species, resulting in different effectiveness to concentrate CO2 around Rubisco active sites. Interestingly, an inverse relationship was found between the effectiveness of CCMs and the in vitro Rubisco carboxylation efficiency, which possibly led to a similar carboxylation potential across the analyzed macroalgal species. Our results demonstrate a coevolution between Rubisco kinetics and CCMs across phylogenetically distant marine macroalgal species sharing the same environment.


Assuntos
Alga Marinha , Dióxido de Carbono , Ribulose-Bifosfato Carboxilase/metabolismo , Carbono , Filogenia , Fotossíntese
8.
Photosynth Res ; 156(2): 231-245, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941458

RESUMO

Cyanobacteria largely contribute to the biogeochemical carbon cycle fixing ~ 25% of the inorganic carbon on Earth. However, the carbon acquisition and assimilation mechanisms in Cyanobacteria are still underexplored regardless of being of great importance for shedding light on the origins of autotropism on Earth and providing new bioengineering tools for crop yield improvement. Here, we fully characterized these mechanisms from the polyextremophile cyanobacterium Chroococcidiopsis thermalis KOMAREK 1964/111 in comparison with the model cyanobacterial strain, Synechococcus sp. PCC6301. In particular, we analyzed the Rubisco kinetics along with the in vivo photosynthetic CO2 assimilation in response to external dissolved inorganic carbon, the effect of CO2 concentrating mechanism (CCM) inhibitors on net photosynthesis and the anatomical particularities of their carboxysomes when grown under either ambient air (0.04% CO2) or 2.5% CO2-enriched air. Our results show that Rubisco from C. thermalis possess the highest specificity factor and carboxylation efficiency ever reported for Cyanobacteria, which were accompanied by a highly effective CCM, concentrating CO2 around Rubisco more than 140-times the external CO2 levels, when grown under ambient CO2 conditions. Our findings provide new insights into the Rubisco kinetics of Cyanobacteria, suggesting that improved Sc/o values can still be compatible with a fast-catalyzing enzyme. The combination of Rubisco kinetics and CCM effectiveness in C. thermalis relative to other cyanobacterial species might indicate that the co-evolution between Rubisco and CCMs in Cyanobacteria is not as constrained as in other phylogenetic groups.


Assuntos
Ribulose-Bifosfato Carboxilase , Synechococcus , Filogenia , Ribulose-Bifosfato Carboxilase/metabolismo , Carbono , Dióxido de Carbono/farmacologia , Synechococcus/metabolismo , Fotossíntese
9.
Plant J ; 101(4): 897-918, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31820505

RESUMO

RuBisCO-catalyzed CO2 fixation is the main source of organic carbon in the biosphere. This enzyme is present in all domains of life in different forms (III, II, and I) and its origin goes back to 3500 Mya, when the atmosphere was anoxygenic. However, the RuBisCO active site also catalyzes oxygenation of ribulose 1,5-bisphosphate, therefore, the development of oxygenic photosynthesis and the subsequent oxygen-rich atmosphere promoted the appearance of CO2 concentrating mechanisms (CCMs) and/or the evolution of a more CO2 -specific RuBisCO enzyme. The wide variability in RuBisCO kinetic traits of extant organisms reveals a history of adaptation to the prevailing CO2 /O2 concentrations and the thermal environment throughout evolution. Notable differences in the kinetic parameters are found among the different forms of RuBisCO, but the differences are also associated with the presence and type of CCMs within each form, indicative of co-evolution of RuBisCO and CCMs. Trade-offs between RuBisCO kinetic traits vary among the RuBisCO forms and also among phylogenetic groups within the same form. These results suggest that different biochemical and structural constraints have operated on each type of RuBisCO during evolution, probably reflecting different environmental selective pressures. In a similar way, variations in carbon isotopic fractionation of the enzyme point to significant differences in its relationship to the CO2 specificity among different RuBisCO forms. A deeper knowledge of the natural variability of RuBisCO catalytic traits and the chemical mechanism of RuBisCO carboxylation and oxygenation reactions raises the possibility of finding unrevealed landscapes in RuBisCO evolution.


Assuntos
Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Adaptação Biológica , Evolução Molecular , Cinética , Fotossíntese , Filogenia , Proteínas de Plantas/metabolismo , Temperatura
10.
Biochem Soc Trans ; 49(5): 2007-2019, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623388

RESUMO

Rising human population, along with the reduction in arable land and the impacts of global change, sets out the need for continuously improving agricultural resource use efficiency and crop yield (CY). Bioengineering approaches for photosynthesis optimization have largely demonstrated the potential for enhancing CY. This review is focused on the improvement of Rubisco functioning, which catalyzes the rate-limiting step of CO2 fixation required for plant growth, but also catalyzes the ribulose-bisphosphate oxygenation initiating the carbon and energy wasteful photorespiration pathway. Rubisco carboxylation capacity can be enhanced by engineering the Rubisco large and/or small subunit genes to improve its catalytic traits, or by engineering the mechanisms that provide enhanced Rubisco expression, activation and/or elevated [CO2] around the active sites to favor carboxylation over oxygenation. Recent advances have been made in the expression, assembly and activation of foreign (either natural or mutant) faster and/or more CO2-specific Rubisco versions. Some components of CO2 concentrating mechanisms (CCMs) from bacteria, algae and C4 plants has been successfully expressed in tobacco and rice. Still, none of the transformed plant lines expressing foreign Rubisco versions and/or simplified CCM components were able to grow faster than wild type plants under present atmospheric [CO2] and optimum conditions. However, the results obtained up to date suggest that it might be achievable in the near future. In addition, photosynthetic and yield improvements have already been observed when manipulating Rubisco quantity and activation degree in crops. Therefore, engineering Rubisco carboxylation capacity continues being a promising target for the improvement in photosynthesis and yield.


Assuntos
Bioengenharia/métodos , Produção Agrícola/métodos , Fotossíntese/genética , Engenharia de Proteínas/métodos , Ribulose-Bifosfato Carboxilase/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Catálise , Cloroplastos/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Ativação Enzimática/genética , Oryza/enzimologia , Oryza/genética , Oryza/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Ribulose-Bifosfato Carboxilase/genética , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
11.
J Exp Bot ; 72(22): 7846-7862, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34329386

RESUMO

Due to the importance of Rubisco in the biosphere, its kinetic parameters have been measured by different methodologies in a large number of studies over the last 60 years. These parameters are essential to characterize the natural diversity in the catalytic properties of the enzyme and they are also required for photosynthesis and cross-scale crop modeling. The present compilation of Rubisco kinetic parameters in model species revealed a wide intraspecific laboratory-to-laboratory variability, which was partially solved by making corrections to account for differences in the assay buffer composition and in the acidity constant of dissolved CO2, as well as for differences in the CO2 and O2 solubilities. Part of the intraspecific variability was also related to the different analytical methodologies used. For instance, significant differences were found between the two main methods for the determination of the specificity factor (Sc/o), and also between Rubisco quantification methods, Rubisco purification versus crude extracts, and single-point versus CO2 curve measurements for the carboxylation turnover rate (kcatc) determination. Causes of the intraspecific laboratory-to-laboratory variability for Rubisco catalytic traits are discussed. This study provides a normalized kinetic dataset for model species to be used by the scientific community. Corrections and recommendations are also provided to reduce measurement variability, allowing the comparison of kinetic data obtained in different laboratories using different assay conditions.


Assuntos
Dióxido de Carbono , Ribulose-Bifosfato Carboxilase , Cinética , Fenótipo , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo
12.
BMC Evol Biol ; 20(1): 11, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969115

RESUMO

BACKGROUND: The CO2-concentrating mechanism associated to Crassulacean acid metabolism (CAM) alters the catalytic context for Rubisco by increasing CO2 availability and provides an advantage in particular ecological conditions. We hypothesized about the existence of molecular changes linked to these particular adaptations in CAM Rubisco. We investigated molecular evolution of the Rubisco large (L-) subunit in 78 orchids and 144 bromeliads with C3 and CAM photosynthetic pathways. The sequence analyses were complemented with measurements of Rubisco kinetics in some species with contrasting photosynthetic mechanism and differing in the L-subunit sequence. RESULTS: We identified potential positively selected sites and residues with signatures of co-adaptation. The implementation of a decision tree model related Rubisco specific variable sites to the leaf carbon isotopic composition of the species. Differences in the Rubisco catalytic traits found among C3 orchids and between strong CAM and C3 bromeliads suggested Rubisco had evolved in response to differing CO2 concentration. CONCLUSIONS: The results revealed that the variability in the Rubisco L-subunit sequence in orchids and bromeliads is composed of coevolving sites under potential positive adaptive signal. The sequence variability was related to δ13C in orchids and bromeliads, however it could not be linked to the variability found in the kinetic properties of the studied species.


Assuntos
Bromeliaceae/enzimologia , Carbono/metabolismo , Evolução Molecular , Orchidaceae/enzimologia , Ribulose-Bifosfato Carboxilase/genética , Adaptação Fisiológica , Isótopos de Carbono/metabolismo , Cinética , Fotossíntese , Filogenia , Folhas de Planta/genética , Subunidades Proteicas/metabolismo , Seleção Genética
13.
Ann Bot ; 126(1): 25-37, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32173732

RESUMO

BACKGROUND AND AIMS: Carnivorous plants can enhance photosynthetic efficiency in response to prey nutrient uptake, but the underlying mechanisms of increased photosynthesis are largely unknown. Here we investigated photosynthesis in the pitcher plant Nepenthes × ventrata in response to different prey-derived and root mineral nutrition to reveal photosynthetic constrains. METHODS: Nutrient-stressed plants were irrigated with full inorganic solution or fed with four different insects: wasps, ants, beetles or flies. Full dissection of photosynthetic traits was achieved by means of gas exchange, chlorophyll fluorescence and immunodetection of photosynthesis-related proteins. Leaf biochemical and anatomical parameters together with mineral composition, nitrogen and carbon isotopic discrimination of leaves and insects were also analysed. KEY RESULTS: Mesophyll diffusion was the major photosynthetic limitation for nutrient-stressed Nepenthes × ventrata, while biochemistry was the major photosynthetic limitation after nutrient application. The better nutrient status of insect-fed and root-fertilized treatments increased chlorophyll, pigment-protein complexes and Rubisco content. As a result, both photochemical and carboxylation potential were enhanced, increasing carbon assimilation. Different nutrient application affected growth, and root-fertilized treatment led to the investment of more biomass in leaves instead of pitchers. CONCLUSIONS: The study resolved a 35-year-old hypothesis that carnivorous plants increase photosynthetic assimilation via the investment of prey-derived nitrogen in the photosynthetic apparatus. The equilibrium between biochemical and mesophyll limitations of photosynthesis is strongly affected by the nutrient treatment.


Assuntos
Carnivoridade , Fotossíntese , Animais , Dióxido de Carbono , Clorofila , Nutrientes , Compostos Orgânicos , Folhas de Planta
14.
Physiol Plant ; 168(3): 576-589, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31102278

RESUMO

A variety of cellular responses is needed to ensure the plants survival during drought, but little is known about the signaling mechanisms involved in this process. Soybean cultivars (EMBRAPA 48 and BR 16, tolerant and sensitive to drought, respectively) were exposed to the following treatments: control conditions (plants in field capacity), drought (20% of available water in the soil), sodium nitroprusside (SNP) treatment (plants irrigated and treated with 100-µM SNP [SNP-nitric oxide (NO) donor molecule], and Drought + SNP (plants subjected to drought and SNP treatment). Plants remained in these conditions until the reproductive stage and were evaluated for physiological (photosynthetic pigments, chlorophyll a fluorescence and gas exchange rates), hydraulic (water potential, osmotic potential and leaf hydraulic conductivity) and morpho-anatomical traits (biomass, venation density and stomatal characterization). Exposure to water deficit considerably reduced water potential in both cultivars and resulted in decrease in photosynthesis and biomass accumulation. The addition of the NO donor attenuated these damaging effects of water deficit and increased the tolerance index of both cultivars. The results showed that NO was able to reduce plant's water loss, while maintaining their biomass production through alteration in stomatal characteristics, hydraulic conductivity and the biomass distribution pattern. These hydraulic and morpho-anatomical alterations allowed the plants to obtain, transport and lose less water to the atmosphere, even in water deficit conditions.


Assuntos
Secas , Glycine max/fisiologia , Óxido Nítrico/fisiologia , Estresse Fisiológico , Água , Clorofila A , Nitroprussiato/farmacologia , Fotossíntese , Folhas de Planta/fisiologia
15.
Plant J ; 96(3): 607-619, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30066411

RESUMO

Trichomes are specialised structures that originate from the aerial epidermis of plants, and play key roles in the interaction between the plant and the environment. In this study we investigated the trichome phenotypes of four lines selected from the Solanum lycopersicum × Solanum pennellii introgression line (IL) population for differences in trichome density, and their impact on plant performance under water-deficit conditions. We performed comparative analyses at morphological and photosynthetic levels of plants grown under well-watered (WW) and also under water-deficit (WD) conditions in the field. Under WD conditions, we observed higher trichome density in ILs 11-3 and 4-1, and lower stomatal size in IL 4-1 compared with plants grown under WW conditions. The intrinsic water use efficiency (WUEi ) was higher under WD conditions in IL 11-3, and the plant-level water use efficiency (WUEb ) was also higher in IL 11-3 and in M82 for WD plants. The ratio of trichomes to stomata (T/S) was positively correlated with WUEi and WUEb , indicating an important role for both trichomes and stomata in drought tolerance in tomato, and offering a promising way to select for improved water use efficiency of major crops.


Assuntos
Solanum lycopersicum/genética , Água/metabolismo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/fisiologia , Fenótipo , Fotossíntese , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Tricomas/anatomia & histologia , Tricomas/genética , Tricomas/fisiologia
16.
J Exp Bot ; 70(4): 1283-1297, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576461

RESUMO

Despite the high productivity and ecological importance of seaweeds in polar coastal regions, little is known about their carbon utilization mechanisms, especially the kinetics of the CO2-fixing enzyme Rubisco. We analyzed Rubisco carboxylation kinetics at 4 °C and 25 °C in 12 diverse polar seaweed species (including cold-temperate populations of the same species) and the relationship with their ability to use bicarbonate, by using 13C isotope discrimination and pH drift experiments. We observed a large variation in Rubisco carboxylation kinetics among the selected species, although no correlation was found between either the Michaelis-Menten constant for CO2 (Kc) or Rubisco content per total soluble protein ([Rubisco]/[TSP]) and the ability to use bicarbonate for non-green seaweeds. This study reports intraspecific Rubisco cold adaptation by means of either higher Rubisco carboxylation turnover rate (kcatc) and carboxylase efficiency (kcatc/Kc) at 4 °C or higher [Rubisco]/[TSP] in some of the analyzed species. Our data point to a widespread ability for photosynthetic bicarbonate usage among polar seaweeds, despite the higher affinity of Rubisco for CO2 and higher dissolved CO2 concentration in cold seawater. Moreover, the reported catalytic variation within form ID Rubisco might avert the canonical trade-off previously observed between Kc and kcatc for plant Rubiscos.


Assuntos
Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Alga Marinha/metabolismo , Compostos Inorgânicos de Carbono/metabolismo , Temperatura Baixa , Cinética , Alga Marinha/enzimologia , Temperatura
17.
New Phytol ; 218(4): 1406-1418, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29682746

RESUMO

The Antarctic Peninsula has experienced a rapid warming in the last decades. Although recent climatic evidence supports a new tendency towards stabilization of temperatures, the impacts on the biosphere, and specifically on Antarctic plant species, remain unclear. We evaluated the in situ warming effects on photosynthesis, including the underlying diffusive, biochemical and anatomical determinants, and the relative growth of two Antarctic vascular species, Colobanthus quitensis and Deschampsia antarctica, using open top chambers (OTCs) and gas exchange measurements in the field. In C. quitensis, the photosynthetic response to warming relied on specific adjustments in the anatomical determinants of the leaf CO2 transfer, which enhanced mesophyll conductance and photosynthetic assimilation, thereby promoting higher leaf carbon gain and plant growth. These changes were accompanied by alterations in the leaf chemical composition. By contrast, D. antarctica showed no response to warming, with a lack of significant differences between plants grown inside OTCs and plants grown in the open field. Overall, the present results are the first reporting a contrasting effect of in situ warming on photosynthesis and its underlying determinants, of the two unique Antarctic vascular plant species, which could have direct consequences on their ecological success under future climate conditions.


Assuntos
Embriófitas/crescimento & desenvolvimento , Embriófitas/fisiologia , Aquecimento Global , Fotossíntese , Feixe Vascular de Plantas/fisiologia , Regiões Antárticas , Biomassa , Dióxido de Carbono/metabolismo , Geografia , Células do Mesofilo/fisiologia , Microclima , Modelos Biológicos , Nitrogênio/metabolismo , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Temperatura
18.
New Phytol ; 213(4): 1642-1653, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28164333

RESUMO

Theory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resource-acquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa. We found weak integration between leaf structure (e.g. leaf mass per area) and physiological function (photosynthetic rate, biochemical capacity and CO2 diffusion), even though all were arrayed in the predicted direction along a 'fast-slow' spectrum. This suggests considerable scope for unique trait combinations to evolve in response to new environments or in crop breeding. In particular, we found that partially independent variation in stomatal and mesophyll conductance may allow a plant to improve water-use efficiency without necessarily sacrificing maximum photosynthetic rates. Our study does not imply that functional trait spectra, such as the leaf economics spectrum, are unimportant, but that many important axes of variation within a taxonomic group may be unique and not generalizable to other taxa.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/fisiologia , Dióxido de Carbono/metabolismo , Clima , Difusão , Cinética , Células do Mesofilo/metabolismo , Fenótipo , Fotossíntese , Subunidades Proteicas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Especificidade da Espécie , Temperatura , Água
19.
New Phytol ; 214(2): 585-596, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28058722

RESUMO

Leaf mass per area (LMA) has been suggested to negatively affect the mesophyll conductance to CO2 (gm ), which is the most limiting factor for area-based photosynthesis (AN ) in many Mediterranean sclerophyll species. However, despite their high LMA, these species have similar AN to plants from other biomes. Variations in other leaf anatomical traits, such as mesophyll and chloroplast surface area exposed to intercellular air space (Sm /S and Sc /S), may offset the restrictions imposed by high LMA in gm and AN in these species. Seven sclerophyllous Mediterranean oaks from Europe/North Africa and North America with contrasting LMA were compared in terms of morphological, anatomical and photosynthetic traits. Mediterranean oaks showed specific differences in AN that go beyond the common morphological leaf traits reported for these species (reduced leaf area and thick leaves). These variations resulted mainly from the differences in gm , the most limiting factor for carbon assimilation in these species. Species with higher AN showed increased Sc /S, which implies increased gm without changes in stomatal conductance. The occurrence of this anatomical adaptation at the cell level allowed evergreen oaks to reach AN values comparable to congeneric deciduous species despite their higher LMA.


Assuntos
Células do Mesofilo/citologia , Fotossíntese , Quercus/citologia , Quercus/fisiologia , Clima , Geografia , Região do Mediterrâneo , Células do Mesofilo/fisiologia , Estômatos de Plantas/fisiologia , Especificidade da Espécie
20.
Plant Physiol ; 171(4): 2549-61, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27329223

RESUMO

Rubisco catalytic traits and their thermal dependence are two major factors limiting the CO2 assimilation potential of plants. In this study, we present the profile of Rubisco kinetics for 20 crop species at three different temperatures. The results largely confirmed the existence of significant variation in the Rubisco kinetics among species. Although some of the species tended to present Rubisco with higher thermal sensitivity (e.g. Oryza sativa) than others (e.g. Lactuca sativa), interspecific differences depended on the kinetic parameter. Comparing the temperature response of the different kinetic parameters, the Rubisco Km for CO2 presented higher energy of activation than the maximum carboxylation rate and the CO2 compensation point in the absence of mitochondrial respiration. The analysis of the Rubisco large subunit sequence revealed the existence of some sites under adaptive evolution in branches with specific kinetic traits. Because Rubisco kinetics and their temperature dependency were species specific, they largely affected the assimilation potential of Rubisco from the different crops, especially under those conditions (i.e. low CO2 availability at the site of carboxylation and high temperature) inducing Rubisco-limited photosynthesis. As an example, at 25°C, Rubisco from Hordeum vulgare and Glycine max presented, respectively, the highest and lowest potential for CO2 assimilation at both high and low chloroplastic CO2 concentrations. In our opinion, this information is relevant to improve photosynthesis models and should be considered in future attempts to design more efficient Rubiscos.


Assuntos
Biocatálise , Produtos Agrícolas/enzimologia , Produtos Agrícolas/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Dióxido de Carbono/metabolismo , Cinética , Filogenia , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa