Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Hum Mol Genet ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881369

RESUMO

The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-Regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary variants in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these variants affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. In cells expressing the Shoc2 NSLH mutants, we found that the AKT signaling pathway triggers the PAK activation, followed by phosphorylation of Raf-1/MEK1/2 and activation of the ERK1/2 signaling axis. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide additional evidence for the role of Shoc2 as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.

2.
Dev Biol ; 492: 156-171, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265687

RESUMO

The extracellular signal-regulated kinase (ERK1/2) pathway is essential in embryonic development. The scaffold protein Shoc2 is a critical modulator of ERK1/2 signals, and mutations in the shoc2 gene lead to the human developmental disease known as Noonan-like syndrome with loose anagen hair (NSLH). The loss of Shoc2 and the shoc2 NSLH-causing mutations affect the tissues of neural crest (NC) origin. In this study, we utilized the zebrafish model to dissect the role of Shoc2-ERK1/2 signals in the development of NC. These studies established that the loss of Shoc2 significantly altered the expression of transcription factors regulating the specification and differentiation of NC cells. Using comparative transcriptome analysis of NC-derived cells from shoc2 CRISPR/Cas9 mutant larvae, we found that Shoc2-mediated signals regulate gene programs at several levels, including expression of genes coding for the proteins of extracellular matrix (ECM) and ECM regulators. Together, our results demonstrate that Shoc2 is an essential regulator of NC development. This study also indicates that disbalance in the turnover of the ECM may lead to the abnormalities found in NSLH patients.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Crista Neural , Animais , Humanos , Matriz Extracelular , Sistema de Sinalização das MAP Quinases/fisiologia , Síndrome de Noonan/genética , Peixe-Zebra/genética , Síndrome dos Cabelos Anágenos Frouxos
3.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553755

RESUMO

The ERK1/2 (also known as MAPK3 and MAPK1, respectively) signaling pathway is critical in organismal development and tissue morphogenesis. Deregulation of this pathway leads to congenital abnormalities with severe developmental dysmorphisms. The core ERK1/2 cascade relies on scaffold proteins, such as Shoc2 to guide and fine-tune its signals. Mutations in SHOC2 lead to the development of the pathology termed Noonan-like Syndrome with Loose Anagen Hair (NSLAH). However, the mechanisms underlying the functions of Shoc2 and its contributions to disease progression remain unclear. Here, we show that ERK1/2 pathway activation triggers the interaction of Shoc2 with the ubiquitin-specific protease USP7. We reveal that, in the Shoc2 module, USP7 functions as a molecular 'switch' that controls the E3 ligase HUWE1 and the HUWE1-induced regulatory feedback loop. We also demonstrate that disruption of Shoc2-USP7 binding leads to aberrant activation of the Shoc2-ERK1/2 axis. Importantly, our studies reveal a possible role for USP7 in the pathogenic mechanisms underlying NSLAH, thereby extending our understanding of how ubiquitin-specific proteases regulate intracellular signaling.


Assuntos
Síndrome dos Cabelos Anágenos Frouxos , Sistema de Sinalização das MAP Quinases , Síndrome de Noonan , Peptidase 7 Específica de Ubiquitina , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases/genética , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Peptidase 7 Específica de Ubiquitina/genética
4.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266292

RESUMO

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
5.
Hum Mol Genet ; 28(3): 501-514, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329053

RESUMO

The extracellular signal-related kinase 1 and 2 (ERK1/2) pathway is a highly conserved signaling cascade with numerous essential functions in development. The scaffold protein Shoc2 amplifies the activity of the ERK1/2 pathway and is an essential modulator of a variety of signaling inputs. Germline mutations in Shoc2 are associated with the human developmental disease known as the Noonan-like syndrome with loose anagen hair. Clinical manifestations of this disease include congenital heart defects, developmental delays, distinctive facial abnormalities, reduced growth and cognitive deficits along with hair anomalies. The many molecular details of pathogenesis of the Noonan-like syndrome and related developmental disorders, cumulatively called RASopathies, remain poorly understood. Mouse knockouts for Shoc2 are embryonic lethal, emphasizing the need for additional animal models to study the role of Shoc2 in embryonic development. Here, we characterize a zebrafish shoc2 mutant, and show that Shoc2 is essential for development, and that its loss is detrimental for the development of the neural crest and for hematopoiesis. The zebrafish model of the Noonan-like syndrome described here provides a novel system for the study of structure-function analyses and for genetic screens in a tractable vertebrate system.


Assuntos
Hematopoese/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Modelos Animais de Doenças , Mutação em Linhagem Germinativa , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Síndrome dos Cabelos Anágenos Frouxos/genética , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Crista Neural/metabolismo , Crista Neural/fisiologia , Síndrome de Noonan/genética , Fenótipo , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
6.
Proc Natl Acad Sci U S A ; 114(14): E2826-E2835, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325868

RESUMO

Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid ß peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to ∼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.


Assuntos
Endossomos/metabolismo , Fosfatos de Inositol/metabolismo , Insulisina/metabolismo , Fosfatidilinositóis/metabolismo , Androstadienos/farmacologia , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Endossomos/efeitos dos fármacos , Ativação Enzimática , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Insulisina/química , Insulisina/genética , Lipossomos/química , Lipossomos/metabolismo , Mutação , Wortmanina
7.
J Cell Sci ; 128(23): 4428-41, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519477

RESUMO

The scaffold protein Shoc2 accelerates activity of the ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1) pathway. Mutations in Shoc2 result in Noonan-like RASopathy, a developmental disorder with a wide spectrum of symptoms. The amplitude of the ERK1/2 signals transduced through the complex is fine-tuned by the HUWE1-mediated ubiquitylation of Shoc2 and its signaling partner RAF-1. Here, we provide a mechanistic basis of how ubiquitylation of Shoc2 and RAF-1 is controlled. We demonstrate that the newly identified binding partner of Shoc2, the (AAA+) ATPase PSMC5, triggers translocation of Shoc2 to endosomes. At the endosomes, PSMC5 displaces the E3 ligase HUWE1 from the scaffolding complex to attenuate ubiquitylation of Shoc2 and RAF-1. We show that a RASopathy mutation that changes the subcellular distribution of Shoc2 leads to alterations in Shoc2 ubiquitylation due to the loss of accessibility to PSMC5. In summary, our results demonstrate that PSMC5 is a new and important player involved in regulating ERK1/2 signal transmission through the remodeling of Shoc2 scaffold complex in a spatially-defined manner.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas com Domínio LIM/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Mutação , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Fatores de Transcrição/genética
8.
Hum Mutat ; 35(11): 1290-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25137548

RESUMO

Rasopathies are a group of genetic disorders caused by germline mutations in multiple genes of the Extracellular signal-Regulated Kinases 1 and 2 (ERK1/2) pathway. The only previously identified missense mutation in SHOC2, a scaffold protein of the ERK1/2 pathway, led to Noonan-like syndrome with loose anagen hair. Here, we report a novel mutation in SHOC2(c.519G>A; p.M173I) that leads to a Rasopathy with clinical features partially overlapping those occurring in Noonan and cardiofaciocutaneous syndromes. Studies to clarify the significance of this SHOC2 variant revealed that the mutant protein has impaired capacity to interact with protein phosphatase 1c (PP1c), leading to insufficient activation of RAF-1 kinase. This SHOC2 variant thus is unable to fully rescue ERK1/2 activity in cells depleted of endogenous SHOC2. We conclude that SHOC2 mutations can cause a spectrum of Rasopathy phenotypes in heterozygous individuals. Importantly, our work suggests that individuals with mild Rasopathy symptoms may be underdiagnosed.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Variação Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Anormalidades Múltiplas/metabolismo , Pré-Escolar , Fácies , Feminino , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação , Fenótipo , Ligação Proteica
9.
bioRxiv ; 2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38187642

RESUMO

The Shoc2 scaffold protein is crucial in transmitting signals within the Epidermal Growth Factor Receptor (EGFR)-mediated Extracellular signal-regulated Kinase (ERK1/2) pathway. While the significance of Shoc2 in this pathway is well-established, the precise mechanisms through which Shoc2 governs signal transmission remain to be fully elucidated. Hereditary mutations in Shoc2 are responsible for Noonan Syndrome with Loose anagen Hair (NSLH). However, due to the absence of known enzymatic activity in Shoc2, directly assessing how these mutations affect its function is challenging. ERK1/2 phosphorylation is used as a primary parameter of Shoc2 function, but the impact of Shoc2 mutants on the pathway activation is unclear. This study investigates how the NSLH-associated Shoc2 variants influence EGFR signals in the context of the ERK1/2 and AKT downstream signaling pathways. We show that when the ERK1/2 pathway is a primary signaling pathway activated downstream of EGFR, Shoc2 variants cannot upregulate ERK1/2 phosphorylation to the level of the WT Shoc2. Yet, when the AKT and ERK1/2 pathways were activated, in cells expressing Shoc2 variants, ERK1/2 phosphorylation was higher than in cells expressing WT Shoc2. We found that, in cells expressing the Shoc2 NSLH mutants, the AKT signaling pathway triggers the PAK activation, followed by phosphorylation and Raf-1/MEK1/2 /ERK1/2 signaling axis activation. Hence, our studies reveal a previously unrecognized feedback regulation downstream of the EGFR and provide evidence for the Shoc2 role as a "gatekeeper" in controlling the selection of downstream effectors within the EGFR signaling network.

10.
FEBS J ; 288(3): 721-739, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32558243

RESUMO

Leucine-rich repeat-containing proteins (LRR proteins) are involved in supporting a large number of cellular functions. In this review, we summarize recent advancements in understanding functions of the LRR proteins as signaling scaffolds. In particular, we explore what we have learned about the mechanisms of action of the LRR scaffolds Shoc2 and Erbin and their roles in normal development and disease. We discuss Shoc2 and Erbin in the context of their multiple known interacting partners in various cellular processes and summarize often unexpected functions of these proteins through analysis of their roles in human pathologies. We also review these LRR scaffold proteins as promising therapeutic targets and biomarkers with potential application across various pathologies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Proteínas/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação , Humanos , Proteínas de Repetições Ricas em Leucina , Modelos Biológicos , Neoplasias/patologia , Ligação Proteica
11.
Traffic ; 9(10): 1776-90, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18657070

RESUMO

To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.


Assuntos
Membrana Celular/metabolismo , Clatrina/fisiologia , Endocitose/fisiologia , Endossomos/enzimologia , MAP Quinase Quinase 2/metabolismo , Quinases raf/metabolismo , Western Blotting , Clatrina/genética , Receptores ErbB/metabolismo , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , MAP Quinase Quinase 2/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Transfecção
12.
Mol Immunol ; 118: 110-116, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31869742

RESUMO

The accurate transmission of signals by the canonical ERK1/2 kinase pathway critically relies on the proper assembly of an intricate multiprotein complex by the scaffold protein Shoc2. However, the details of the mechanism by which Shoc2 guides ERK1/2 signals are not clear, in part, due to the lack of research tools targeting specific protein binding moieties of Shoc2. We report generation and characterization of single domain antibodies against human Shoc2 using a universal synthetic library of humanized nanobodies. Our results identify eight synthetic single-domain antibodies and show that two evaluated antibodies have binding affinities to Shoc2 in the nanomolar range. High affinity antibodies were uniquely suited for the analysis of the Shoc2 complex assembly. Selected single-domain antibodies were also functional in intracellular assays. This study illustrates that Shoc2 single-domain antibodies can be used to understand functional mechanisms governing complex multiprotein signaling modules and have promise in application for therapies that require modulation of the ERK1/2-associated diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Transdução de Sinais/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/imunologia , Ligação Proteica/imunologia
13.
Mol Biol Cell ; 30(14): 1655-1663, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31091164

RESUMO

Valosin-containing protein (VCP), also named p97, is an essential hexameric AAA+ ATPase with diverse functions in the ubiquitin system. Here we demonstrate that VCP is critical in controlling signals transmitted via the essential Shoc2-ERK1/2 signaling axis. The ATPase activity of VCP modulates the stoichiometry of HUWE1 in the Shoc2 complex as well as HUWE1-mediated allosteric ubiquitination of the Shoc2 scaffold and the RAF-1 kinase. Abrogated ATPase activity leads to augmented ubiquitination of Shoc2/RAF-1 and altered phosphorylation of RAF-1. We found that in fibroblasts from patients with inclusion body myopathy with Paget's disease of bone and frontotemporal dementia (IBMPFD) that harbor germline mutations in VCP, the levels of Shoc2 ubiquitination and ERK1/2 phosphorylation are imbalanced. This study provides a mechanistic basis for the critical role of VCP in the regulation of the ERK1/2 pathway and reveals a previously unrecognized function of the ERK1/2 pathway in the pathogenesis of IBMPFD.


Assuntos
Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Miosite de Corpos de Inclusão/metabolismo , Miosite de Corpos de Inclusão/patologia , Osteíte Deformante/metabolismo , Osteíte Deformante/patologia , Proteína com Valosina/metabolismo , Endossomos/metabolismo , Humanos , Modelos Biológicos , Ubiquitinação
14.
Commun Integr Biol ; 9(4): e1188241, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27574535

RESUMO

The extracellular signal-regulated kinase (ERK1/2) cascade regulates a myriad of functions in multicellular organisms. Scaffold proteins provide critical spatial and temporal control over the specificity of signaling. Shoc2 is a scaffold that accelerates activity of the ERK1/2 pathway. Loss of Shoc2 expression in mice results in embryonic lethality, thus highlighting the essential role of Shoc2 in embryogenesis. In agreement, patients carrying mutated Shoc2 suffer from a wide spectrum of developmental deficiencies. Efforts to understand the mechanisms by which Shoc2 controls ERK1/2 activity revealed the intricate machinery that governs the ability of Shoc2 to transduce signals of the ERK1/2 pathway. Understanding the mechanisms by which Shoc2 contributes to a high degree of specificity of ERK1/2 signaling as well as deciphering the biological functions of Shoc2 in development and human disorders are major unresolved questions.

15.
Data Brief ; 7: 770-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27077079

RESUMO

The Suppressor of Clear, Caenorhabditis elegans Homolog (SHOC2) is a scaffold protein that positively modulates activity of the RAS/ERK1/2 MAP kinase signaling cascade. We set out to understand the ERK1/2 pathway transcriptional response transduced through the SHOC2 scaffolding module. This data article describes raw gene expression within triplicates of kidney fibroblast-like Cos1 cell line expressing non-targeting shRNA (Cos-NT) and triplicates of Cos1 cells depleted of SHOC2 using shRNA (Cos-LV1) upon activation of ERK1/2 pathway by the Epidermal Growth Factor Receptor (EGFR). The data referred here is available in NCBI׳s Gene Expression Omnibus (GEO), accession GEO: GSE67063 as well as NCBI׳s Sequence Read Archive (SRA), accession SRA: SRP056324. A complete analysis of the results can be found in "Shoc2-tranduced ERK1/2 motility signals - Novel insights from functional genomics"(Jeoung et al., 2016) [1].

16.
Cell Signal ; 28(5): 448-459, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26876614

RESUMO

The extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathway plays a central role in defining various cellular fates. Scaffold proteins modulating ERK1/2 activity control growth factor signals transduced by the pathway. Here, we analyzed signals transduced by Shoc2, a critical positive modulator of ERK1/2 activity. We found that loss of Shoc2 results in impaired cell motility and delays cell attachment. As ERKs control cellular fates by stimulating transcriptional response, we hypothesized that the mechanisms underlying changes in cell adhesion could be revealed by assessing the changes in transcription of Shoc2-depleted cells. Using quantitative RNA-seq analysis, we identified 853 differentially expressed transcripts. Characterization of the differentially expressed genes showed that Shoc2 regulates the pathway at several levels, including expression of genes controlling cell motility, adhesion, crosstalk with the transforming growth factor beta (TGFß) pathway, and expression of transcription factors. To understand the mechanisms underlying delayed attachment of cells depleted of Shoc2, changes in expression of the protein of extracellular matrix (lectin galactoside-binding soluble 3-binding protein; LGALS3BP) were functionally analyzed. We demonstrated that delayed adhesion of the Shoc2-depleted cells is a result of attenuated expression and secretion of LGALS3BP. Together our results suggest that Shoc2 regulates cell motility by modulating ERK1/2 signals to cell adhesion.


Assuntos
Movimento Celular , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Células COS , Movimento Celular/genética , Chlorocebus aethiops , Genômica , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Transcriptoma
17.
Methods Enzymol ; 403: 119-34, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16473582

RESUMO

Rab5 is a member of the large family of small GTPases involved in membrane trafficking. Two genetically encoded sensors were developed to visualize Rab5 in its GTP-bound conformation in living cells. Rab5-binding fragments of Rabaptin5 or early endosomal antigen 1 (EEA.1) were fused to yellow fluorescent protein (YFP) and used in the fluorescent resonance energy transfer (FRET) assay together with Rab5-tagged cyan fluorescent protein (CFP). The presence of energy transfer between CFP-Rab5 and YFP-Rab5 binding fragments detected by sensitized FRET microscopy has validated the utility of these generated sensors to visualize the localization of GTP-bound Rab5. GTP-bound Rab5 was found in endosomes, often concentrated in distinct microdomains. Molecular architecture of the Rab5 microdomains was analyzed by three-chromophore FRET (3-FRET) microscopy, utilizing YFP, CFP, and monomeric red fluorescent proteins (mRFP.l). The results of the 3-FRET analysis suggest that GTP-bound Rab5 is capable of oligomerization and present in multiprotein complexes.


Assuntos
Microscopia de Fluorescência/métodos , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Sequência de Bases , Células COS , Chlorocebus aethiops , Primers do DNA , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Reação em Cadeia da Polimerase , Ligação Proteica , Proteínas rab5 de Ligação ao GTP/genética
18.
Methods Enzymol ; 534: 47-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24359947

RESUMO

Spatial distribution of intracellular signaling molecules and assembly of signaling complexes are yet to be fully understood. Studies of signaling events in time or space present a particular challenge due to the adverse effects that overexpression of signaling proteins may have on their functions and localization. To follow the distribution of signaling proteins in living cells we developed a methodology named knockdown and reconstitution (KDAR) that allows one to visualize proteins at levels of expression that are close to physiological. This methodology provides a stable expression of "endogenous" shRNA for long-term silencing of the targeted gene and simultaneous expression of a DNA cassette coding for a fluorescently labeled protein, which is insensitive to the targeting shRNA. In this chapter we discuss the needed reagents and outline two experimental approaches to generate KDAR stable cell lines. First, we demonstrate how the plasmid-mediated KDAR approach is successfully utilized to visualize spatial distribution of the GFP-labeled MEK2 in living cells. We then show how the lentivirus-mediated KDAR approach is used to reconstitute and visualize expression of the ERK1/2 scaffold protein Shoc2.


Assuntos
Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MAP Quinase Quinase 2/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Endossomos/ultraestrutura , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lentivirus/genética , MAP Quinase Quinase 2/genética , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
19.
Mol Cell Biol ; 34(19): 3579-93, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25022756

RESUMO

Scaffold proteins play a critical role in controlling the activity of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Shoc2 is a leucine-rich repeat scaffold protein that acts as a positive modulator of ERK1/2 signaling. However, the precise mechanism by which Shoc2 modulates the activity of the ERK1/2 pathway is unclear. Here we report the identification of the E3 ubiquitin ligase HUWE1 as a binding partner and regulator of Shoc2 function. HUWE1 mediates ubiquitination and, consequently, the levels of Shoc2. Additionally, we show that both Shoc2 and HUWE1 are necessary to control the levels and ubiquitination of the Shoc2 signaling partner, RAF-1. Depletion of HUWE1 abolishes RAF-1 ubiquitination, with corresponding changes in ERK1/2 pathway activity occurring. Our results indicate that the HUWE1-mediated ubiquitination of Shoc2 is the switch that regulates the transition from an active to an inactive state of the RAF-1 kinase. Taken together, our results demonstrate that HUWE1 is a novel player involved in regulating ERK1/2 signal transmission through the Shoc2 scaffold complex.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Células COS , Chlorocebus aethiops , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Proteínas Supressoras de Tumor
20.
Peptides ; 54: 1-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24406899

RESUMO

Glial cell-line derived neurotrophic factor (GDNF) has demonstrated robust effects on dopamine (DA) neuron function and survival. A post-translational processing model of the human GDNF proprotein theorizes the formation of smaller, amidated peptide(s) from the proregion that exhibit neurobiological function, including an 11-amino-acid peptide named dopamine neuron stimulating peptide-11 (DNSP-11). A single treatment of DNSP-11 was delivered to the substantia nigra in the rat to investigate effects on DA-neuron function. Four weeks after treatment, potassium (K+) and D-amphetamine evoked DA release were studied in the striatum using microdialysis. There were no significant changes in DA-release after DNSP-11 treatment determined by microdialysis. Dopamine release was further examined in discrete regions of the striatum using high-speed chronoamperometry at 1-, 2-, and 4-weeks after DNSP-11 treatment. Two weeks after DNSP-11 treatment, potassium-evoked DA release was increased in specific subregions of the striatum. However, spontaneous locomotor activity was unchanged by DNSP-11 treatment. In addition, we show that a single treatment of DNSP-11 in the MN9D dopaminergic neuronal cell line results in phosphorylation of ERK1/2, which suggests a novel cellular mechanism responsible for increases in DA function.


Assuntos
Dopamina/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Linhagem Celular/efeitos dos fármacos , Humanos , Técnicas In Vitro , Masculino , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/química , Fosforilação/efeitos dos fármacos , Ratos Endogâmicos F344 , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa