Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562695

RESUMO

Adhesion systems are very important in robots for infrastructure inspection (especially in vertical walls). They present the challenge of optimizing the ratio vacuum/power consumption in battery-powered robots. In this paper, a CFD (computer fluid dynamics) modelling and optimization process of a robot adhesion system is carried out to determine the best performing configuration in terms of vacuum and power consumption. Analytical and numerical models were developed to predict the behaviour of the system for different configurations. The models were validated, using test rig measurements, by calibrating an arbitrary defined inlet height that simulates the leakage flow. Then, different geometric parameters were varied to determine the best performing configuration based on the vacuum/power consumption ratio value. The model presented in the paper was capable of predicting the behaviour of the system for different configurations, with a margin of error of 15% for the vacuum prediction and 25% for the motor power calculation. Finally, the model was used to optimize parameters of the system, like the number of blades of the impeller. The adhesion system was conceived for the modular autonomous climbing legged robot ROMERIN.

2.
Sensors (Basel) ; 21(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809884

RESUMO

This paper presents a new architecture that integrates Internet of Things (IoT) devices, service robots, and users in a smart assistive environment. A new intuitive and multimodal interaction system supporting people with disabilities and bedbound patients is presented. This interaction system allows the user to control service robots and devices inside the room in five different ways: touch control, eye control, gesture control, voice control, and augmented reality control. The interaction system is comprised of an assistive robotic arm holding a tablet PC. The robotic arm can place the tablet PC in front of the user. A demonstration of the developed technology, a prototype of a smart room equipped with home automation devices, and the robotic assistive arm are presented. The results obtained from the use of the various interfaces and technologies are presented in the article. The results include user preference with regard to eye-base control (performing clicks, and using winks or gaze) and the use of mobile phones over augmented reality glasses, among others.


Assuntos
Pessoas com Deficiência , Procedimentos Cirúrgicos Robóticos , Tecnologia Assistiva , Atenção à Saúde , Humanos
3.
Sensors (Basel) ; 17(12)2017 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-29232846

RESUMO

Falls are the leading cause of injury and death in elderly individuals. Unfortunately, fall detectors are typically based on wearable devices, and the elderly often forget to wear them. In addition, fall detectors based on artificial vision are not yet available on the market. In this paper, we present a new low-cost fall detector for smart homes based on artificial vision algorithms. Our detector combines several algorithms (background subtraction, Kalman filtering and optical flow) as input to a machine learning algorithm with high detection accuracy. Tests conducted on over 50 different fall videos have shown a detection ratio of greater than 96%.


Assuntos
Acidentes por Quedas , Idoso , Algoritmos , Humanos , Aprendizado de Máquina , Monitorização Ambulatorial
4.
Biomimetics (Basel) ; 9(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921199

RESUMO

Robotic control is a fundamental part of autonomous robots. Modular legged and climbing robots are complex machines made up of a variety of subsystems, ranging from a single robot with simple legs to a complex system composed of multiple legs (or modules) with computing power and sensitivity. Their complexity, which is increased by the fact of needing elements for climbing, makes a correct structure crucial to achieve a complete, robust, and versatile system during its operation. Control architectures for legged robots are distinguished from other software architectures because of the special needs of these systems. In this paper, we present an original classification of modular legged and climbing robots, a comprehensive review of the most important control architectures in robotics, focusing on the control of modular legged and climbing robots, and a comparison of their features. The control architecture comparison aims to provide the analytical tools necessary to make informed decisions tailored to the specific needs of your robotic applications. This article includes a review and classification of modular legged and climbing robots, breaking down each category separately.

5.
Biomimetics (Basel) ; 8(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36648797

RESUMO

MoCLORA (Modular Climbing-and-Legged Robotic Organism Architecture) is a software framework for climbing bio-inspired robotic organisms composed of modular robots (legs). It is presented as a modular low-level architecture that coordinates the modules of an organism with any morphology, at the same time allowing exchanges between the physical robot and its digital twin. It includes the basic layers to control and coordinate all the elements, while allowing adding new higher-level components to improve the organism's behavior. It is focused on the control of both the body and the legs of the organism, allowing for position and velocity control of the whole robot. Similarly to insects, which are able to adapt to new situations after the variation on the capacity of any of their legs, MoCLORA allows the control of organisms composed of a variable number of modules, arranged in different ways, giving the overall system the versatility to tackle a wide range of tasks in very diverse environments. The article also presents ROMERIN, a modular climbing and legged robotic organism, and its digital twin, which allows the creation of different module arrangements for testing. MoCLORA has been tested and validated with both the physical robot and its digital twin.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa