Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Environ Change ; 78: 102624, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36846829

RESUMO

The Sustainable Development Goals (SDGs) and the Paris Agreement are the two transformative agendas, which set the benchmarks for nations to address urgent social, economic and environmental challenges. Aside from setting long-term goals, the pathways followed by nations will involve a series of synergies and trade-offs both between and within these agendas. Since it will not be possible to optimise across the 17 SDGs while simultaneously transitioning to low-carbon societies, it will be necessary to implement policies to address the most critical aspects of the agendas and understand the implications for the other dimensions. Here, we rely on a modelling exercise to analyse the long-term implications of a variety of Paris-compliant mitigation strategies suggested in the recent scientific literature on multiple dimensions of the SDG Agenda. The strategies included rely on technological solutions such as renewable energy deployment or carbon capture and storage, nature-based solutions such as afforestation and behavioural changes in the demand side. Results for a selection of energy-environment SDGs suggest that some mitigation pathways could have negative implications on food and water prices, forest cover and increase pressure on water resources depending on the strategy followed, while renewable energy shares, household energy costs, ambient air pollution and yield impacts could be improved simultaneously while reducing greenhouse gas emissions. Overall, results indicate that promoting changes in the demand side could be beneficial to limit potential trade-offs.

2.
Nat Commun ; 15(1): 4172, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755169

RESUMO

Off-grid photovoltaic systems have been proposed as a panacea for economies with poor electricity access, offering a lower-cost "leapfrog" over grid infrastructure used in higher-income economies. Previous research examining pathways to electricity access may understate the role of off-grid photovoltaics as it has not considered reliability and carbon pricing impacts. We perform high-resolution geospatial analysis on universal household electricity access in Sub-Saharan Africa that includes these aspects via least-cost pathways at different electricity demand levels. Under our "Tier 3" demand reference scenario, 24% of our study's 470 million people obtaining electricity access by 2030 do so via off-grid photovoltaics. Including a unit cost for unmet demand of 0.50 US dollars ($)/kWh, to penalise poor system reliability increases this share to 41%. Applying a carbon price (around $80/tonne CO2-eq) increases it to 38%. Our results indicate considerable diversity in the level of policy intervention needed between countries and suggest several regions where lower levels of policy intervention may be effective.

3.
Nat Commun ; 14(1): 5117, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612287

RESUMO

Understanding how 1.5 °C pathways could adjust in light of new adverse information, such as a reduced 1.5 °C carbon budget, or slower-than-expected low-carbon technology deployment, is critical for planning resilient pathways. We use an integrated assessment model to explore potential pathway adjustments starting in 2025 and 2030, following the arrival of new information. The 1.5 °C target remains achievable in the model, in light of some adverse information, provided a broad portfolio of technologies and measures is still available. If multiple pieces of adverse information arrive simultaneously, average annual emissions reductions near 3 GtCO2/yr for the first five years following the pathway adjustment, compared to 2 GtCO2/yr in 2020 when the Covid-19 pandemic began. Moreover, in these scenarios of multiple simultaneous adverse information, by 2050 mitigation costs are 4-5 times as high as a no adverse information scenario, highlighting the criticality of developing a wide range of mitigation options, including energy demand reduction options.

4.
One Earth ; 5(9): 1042-1054, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132807

RESUMO

To meet the Paris temperature targets and recover from the effects of the pandemic, many countries have launched economic recovery plans, including specific elements to promote clean energy technologies and green jobs. However, how to successfully manage investment portfolios of green recovery packages to optimize both climate mitigation and employment benefits remains unclear. Here, we use three energy-economic models, combined with a portfolio analysis approach, to find optimal low-carbon technology subsidy combinations in six major emitting regions: Canada, China, the European Union (EU), India, Japan, and the United States (US). We find that, although numerical estimates differ given different model structures, results consistently show that a >50% investment in solar photovoltaics is more likely to enable CO2 emissions reduction and green jobs, particularly in the EU and China. Our study illustrates the importance of strategically managing investment portfolios in recovery packages to enable optimal outcomes and foster a post-pandemic green economy.

5.
Discov Sustain ; 2(1): 43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35425918

RESUMO

In 2015 the United Nations drafted the Paris Agreement and established the Sustainable Development Goals (SDGs) for all nations. A question of increasing relevance is the extent to which the pursuit of climate action (SDG 13) interacts both positively and negatively with other SDGs. We tackle this question through a two-pronged approach: a novel, automated keyword search to identify linkages between SDGs and UK climate-relevant policies; and a detailed expert survey to evaluate these linkages through specific examples. We consider a particular subset of SDGs relating to health, economic growth, affordable and clean energy and sustainable cities and communities. Overall, we find that of the 89 UK climate-relevant policies assessed, most are particularly interlinked with the delivery of SDG 7 (Affordable and Clean Energy) and SDG 11 (Sustainable Cities and Communities) and that certain UK policies, like the Industrial Strategy and 25-Year Environment Plan, interlink with a wide range of SDGs. Focusing on these climate-relevant policies is therefore likely to deliver a wide range of synergies across SDGs 3 (Good Health and Well-being), 7, 8 (Decent Work and Economic Growth), 9 (Industry, Innovation and Infrastructure), 11, 14 (Life Below Water) and 15 (Life on Land). The expert survey demonstrates that in addition to the range of mostly synergistic interlinkages identified in the keyword search, there are also important potential trade-offs to consider. Our analysis provides an important new toolkit for the research and policy communities to consider interactions between SDGs, which can be employed across a range of national and international contexts. Supplementary Information: The online version contains supplementary material available at 10.1007/s43621-021-00051-w.

6.
Sci Total Environ ; 783: 146861, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33872899

RESUMO

Harmonisation sets the ground to a solid inter-comparison of integrated assessment models. A clear and transparent harmonisation process promotes a consistent interpretation of the modelling outcomes divergences and, reducing the model variance, is instrumental to the use of integrated assessment models to support policy decision-making. Despite its crucial role for climate economic policies, the definition of a comprehensive harmonisation methodology for integrated assessment modelling remains an open challenge for the scientific community. This paper proposes a framework for a harmonisation methodology with the definition of indispensable steps and recommendations to overcome stumbling blocks in order to reduce the variance of the outcomes which depends on controllable modelling assumptions. The harmonisation approach of the PARIS REINFORCE project is presented here to layout such a framework. A decomposition analysis of the harmonisation process is shown through 6 integrated assessment models (GCAM, ICES-XPS, MUSE, E3ME, GEMINI-E3, and TIAM). Results prove the potentials of the proposed framework to reduce the model variance and present a powerful diagnostic tool to feedback on the quality of the harmonisation itself.

7.
Sci Total Environ ; 793: 148549, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174618

RESUMO

Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs.


Assuntos
Mudança Climática , Políticas , Carbono , Dióxido de Carbono , Clima
8.
Energy Res Soc Sci ; 70: 101780, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32983897

RESUMO

Quantitative systems modelling in support of climate policy has tended to focus more on the supply side in assessing interactions among technology, economy, environment, policy and society. By contrast, the demand side is usually underrepresented, often emphasising technological options for energy efficiency improvements. In this perspective, we argue that scientific support to climate action is not only about exploring capacity of "what", in terms of policy and outcome, but also about assessing feasibility and desirability, in terms of "when", "where" and especially for "whom". Without the necessary behavioural and societal transformations, the world faces an inadequate response to the climate crisis challenge. This could result from poor uptake of low-carbon technologies, continued high-carbon intensive lifestyles, or economy-wide rebound effects. For this reason, we propose a framing for a holistic and transdisciplinary perspective on the role of human choices and behaviours in influencing the low-carbon transition, starting from the desires of individuals and communities, and analysing how these interact with the energy and economic landscape, leading to systemic change at the macro-level. In making a case for a political ecology agenda, we expand our scope, from comprehending the role of societal acceptance and uptake of end-use technologies, to co-developing knowledge with citizens from non-mainstream and marginalised communities, and to defining the modelling requirements to assess the decarbonisation potential of shifting lifestyle patterns in climate change and action.

9.
Nat Commun ; 10(1): 3277, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31332176

RESUMO

The feasibility of large-scale biological CO2 removal to achieve stringent climate targets remains unclear. Direct Air Carbon Capture and Storage (DACCS) offers an alternative negative emissions technology (NET) option. Here we conduct the first inter-model comparison on the role of DACCS in 1.5 and 2 °C scenarios, under a variety of techno-economic assumptions. Deploying DACCS significantly reduces mitigation costs, and it complements rather than substitutes other NETs. The key factor limiting DACCS deployment is the rate at which it can be scaled up. Our scenarios' average DACCS scale-up rates of 1.5 GtCO2/yr would require considerable sorbent production and up to 300 EJ/yr of energy input by 2100. The risk of assuming that DACCS can be deployed at scale, and finding it to be subsequently unavailable, leads to a global temperature overshoot of up to 0.8 °C. DACCS should therefore be developed and deployed alongside, rather than instead of, other mitigation options.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa