Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Coleção SES
Intervalo de ano de publicação
1.
Mem Inst Oswaldo Cruz ; 115: e190378, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32401998

RESUMO

BACKGROUND Key genes control the infectivity of the Schistosoma haematobium causing schistosomiasis. A method for understanding the regulation of these genes might help in developing new disease strategies to control schistosomiasis, such as the silencing mediated by microRNAs (miRNAs). The miRNAs have been studied in schistosome species and they play important roles in the post-transcriptional regulation of genes, and in parasite-host interactions. However, genome-wide identification and characterisation of novel miRNAs and their pathway genes and their gene expression have not been explored deeply in the genome and transcriptome of S. haematobium. OBJECTIVES Identify and characterise mature and precursor miRNAs and their pathway genes in the S. haematobium genome. METHODS Computational prediction and characterisation of miRNAs and genes involved in miRNA pathway from S. haematobium genome on SchistoDB. Conserved domain analysis was performed using PFAM and CDD databases. A robust algorithm was applied to identify mature miRNAs and their precursors. The characterisation of the precursor miRNAs was performed using RNAfold, RNAalifold and Perl scripts. FINDINGS We identified and characterised 14 putative proteins involved in miRNA pathway including ARGONAUTE and DICER in S. haematobium. Besides that, 149 mature miRNAs and 131 precursor miRNAs were identified in the genome including novel miRNAs. MAIN CONCLUSIONS miRNA pathway occurs in the S. haematobium, including endogenous miRNAs and miRNA pathway components, suggesting a role of this type of non-coding RNAs in gene regulation in the parasite. The results found in this work will open up a new avenue for studying miRNAs in the S. haematobium biology in helping to understand the mechanism of gene silencing in the human parasite Schistosome.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica/genética , MicroRNAs/genética , Schistosoma haematobium/genética , Esquistossomose/parasitologia , Animais , Humanos , Análise de Sequência de RNA , Transcriptoma/genética
2.
Sci Rep ; 8(1): 16069, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30375421

RESUMO

Cultivated tomato, Solanum lycopersicum, is one of the most common fruits in the global food industry. Together with the wild tomato Solanum pennellii, it is widely used for developing better cultivars. MicroRNAs affect mRNA regulation, inhibiting its translation and/or promoting its degradation. Important proteins involved in these processes are ARGONAUTE and DICER. This study aimed to identify and characterize the genes involved in the miRNA processing pathway, miRNA molecules and target genes in both species. We validated the presence of pathway genes and miRNA in different NGS libraries and 6 miRNA families using quantitative RT-PCR. We identified 71 putative proteins in S. lycopersicum and 108 in S. pennellii likely involved in small RNAs processing. Of these, 29 and 32 participate in miRNA processing pathways, respectively. We identified 343 mature miRNAs, 226 pre-miRNAs in 87 families, including 192 miRNAs, which were not previously identified, belonging to 38 new families in S. lycopersicum. In S. pennellii, we found 388 mature miRNAs and 234 pre-miRNAs contained in 85 families. All miRNAs found in S. pennellii were unpublished, being identified for the first time in our study. Furthermore, we identified 2471 and 3462 different miRNA target in S. lycopersicum and S. pennellii, respectively.


Assuntos
Frutas/genética , MicroRNAs/genética , RNA Mensageiro/genética , Solanum lycopersicum/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala , Solanum lycopersicum/crescimento & desenvolvimento
3.
Mem. Inst. Oswaldo Cruz ; 115: e190378, 2020. tab, graf
Artigo em Inglês | LILACS, SES-SP | ID: biblio-1135284

RESUMO

BACKGROUND Key genes control the infectivity of the Schistosoma haematobium causing schistosomiasis. A method for understanding the regulation of these genes might help in developing new disease strategies to control schistosomiasis, such as the silencing mediated by microRNAs (miRNAs). The miRNAs have been studied in schistosome species and they play important roles in the post-transcriptional regulation of genes, and in parasite-host interactions. However, genome-wide identification and characterisation of novel miRNAs and their pathway genes and their gene expression have not been explored deeply in the genome and transcriptome of S. haematobium. OBJECTIVES Identify and characterise mature and precursor miRNAs and their pathway genes in the S. haematobium genome. METHODS Computational prediction and characterisation of miRNAs and genes involved in miRNA pathway from S. haematobium genome on SchistoDB. Conserved domain analysis was performed using PFAM and CDD databases. A robust algorithm was applied to identify mature miRNAs and their precursors. The characterisation of the precursor miRNAs was performed using RNAfold, RNAalifold and Perl scripts. FINDINGS We identified and characterised 14 putative proteins involved in miRNA pathway including ARGONAUTE and DICER in S. haematobium. Besides that, 149 mature miRNAs and 131 precursor miRNAs were identified in the genome including novel miRNAs. MAIN CONCLUSIONS miRNA pathway occurs in the S. haematobium, including endogenous miRNAs and miRNA pathway components, suggesting a role of this type of non-coding RNAs in gene regulation in the parasite. The results found in this work will open up a new avenue for studying miRNAs in the S. haematobium biology in helping to understand the mechanism of gene silencing in the human parasite Schistosome.


Assuntos
Humanos , Animais , Schistosoma haematobium/genética , Esquistossomose/parasitologia , Regulação da Expressão Gênica/genética , Biologia Computacional/métodos , MicroRNAs/genética , Análise de Sequência de RNA , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa