RESUMO
Angiogenin, an RNase-A-family protein, promotes angiogenesis and has been implicated in cancer, neurodegenerative diseases and epigenetic inheritance1-10. After activation during cellular stress, angiogenin cleaves tRNAs at the anticodon loop, resulting in translation repression11-15. However, the catalytic activity of isolated angiogenin is very low, and the mechanisms of the enzyme activation and tRNA specificity have remained a puzzle3,16-23. Here we identify these mechanisms using biochemical assays and cryogenic electron microscopy (cryo-EM). Our study reveals that the cytosolic ribosome is the activator of angiogenin. A cryo-EM structure features angiogenin bound in the A site of the 80S ribosome. The C-terminal tail of angiogenin is rearranged by interactions with the ribosome to activate the RNase catalytic centre, making the enzyme several orders of magnitude more efficient in tRNA cleavage. Additional 80S-angiogenin structures capture how tRNA substrate is directed by the ribosome into angiogenin's active site, demonstrating that the ribosome acts as the specificity factor. Our findings therefore suggest that angiogenin is activated by ribosomes with a vacant A site, the abundance of which increases during cellular stress24-27. These results may facilitate the development of therapeutics to treat cancer and neurodegenerative diseases.
Assuntos
Microscopia Crioeletrônica , Ribonuclease Pancreático , Ribossomos , Humanos , Anticódon/química , Anticódon/genética , Anticódon/metabolismo , Anticódon/ultraestrutura , Domínio Catalítico , Citosol/metabolismo , Ativação Enzimática , Modelos Moleculares , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Ribonuclease Pancreático/ultraestrutura , Ribossomos/metabolismo , Ribossomos/química , Ribossomos/ultraestrutura , Clivagem do RNA , RNA de Transferência/química , RNA de Transferência/metabolismo , Especificidade por Substrato , Sítios de Ligação , Estresse FisiológicoRESUMO
Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand both the direct and indirect roles of PABPC in more detail, we have employed mass spectrometry to assess the abundance of the components of the yeast proteome, as well as RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, in cells lacking the PAB1 gene. We find that pab1Δ cells manifest drastic changes in the proteome and transcriptome, as well as defects in translation initiation and termination. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination. Collectively, our results indicate that, unlike the loss of simpler regulatory proteins, elimination of cellular Pab1 is profoundly pleiotropic and disruptive to numerous aspects of post-transcriptional regulation.
Assuntos
Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Proteoma/genética , Transcriptoma/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína I de Ligação a Poli(A)/genética , Proteína I de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Ligação a Poli(A)/genética , Estabilidade de RNA/genética , Deleção de Genes , Pleiotropia Genética , Iniciação Traducional da Cadeia PeptídicaRESUMO
Upf1, Upf2, and Upf3, the central regulators of nonsense-mediated mRNA decay (NMD), appear to exercise their NMD functions while bound to elongating ribosomes, and evidence for this conclusion is particularly compelling for Upf1. Hence, we used selective profiling of yeast Upf1:ribosome association to define that step in greater detail, understand whether the nature of the mRNA being translated influences Upf1:80S interaction, and elucidate the functions of ribosome-associated Upf1. Our approach has allowed us to clarify the timing and specificity of Upf1 association with translating ribosomes, obtain evidence for a Upf1 mRNA surveillance function that precedes the activation of NMD, identify a unique ribosome state that generates 37-43 nt ribosome footprints whose accumulation is dependent on Upf1's ATPase activity, and demonstrate that a mutated form of Upf1 can interfere with normal translation termination and ribosome release. In addition, our results strongly support the existence of at least two distinct functional Upf1 complexes in the NMD pathway.
Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases , RNA Helicases/genética , RNA Helicases/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Translation of mRNA into a polypeptide is terminated when the release factor eRF1 recognizes a UAA, UAG, or UGA stop codon in the ribosomal A site and stimulates nascent peptide release. However, stop codon readthrough can occur when a near-cognate tRNA outcompetes eRF1 in decoding the stop codon, resulting in the continuation of the elongation phase of protein synthesis. At the end of a conventional mRNA coding region, readthrough allows translation into the mRNA 3'-UTR. Previous studies with reporter systems have shown that the efficiency of termination or readthrough is modulated by cis-acting elements other than stop codon identity, including two nucleotides 5' of the stop codon, six nucleotides 3' of the stop codon in the ribosomal mRNA channel, and stem-loop structures in the mRNA 3'-UTR. It is unknown whether these elements are important at a genome-wide level and whether other mRNA features proximal to the stop codon significantly affect termination and readthrough efficiencies in vivo. Accordingly, we carried out ribosome profiling analyses of yeast cells expressing wild-type or temperature-sensitive eRF1 and developed bioinformatics strategies to calculate readthrough efficiency, and to identify mRNA and peptide features which influence that efficiency. We found that the stop codon (nt +1 to +3), the nucleotide after it (nt +4), the codon in the P site (nt -3 to -1), and 3'-UTR length are the most influential features in the control of readthrough efficiency, while nts +5 to +9 had milder effects. Additionally, we found low readthrough genes to have shorter 3'-UTRs compared to high readthrough genes in cells with thermally inactivated eRF1, while this trend was reversed in wild-type cells. Together, our results demonstrated the general roles of known regulatory elements in genome-wide regulation and identified several new mRNA or peptide features affecting the efficiency of translation termination and readthrough.
Assuntos
Códon de Terminação/genética , Terminação Traducional da Cadeia Peptídica/genética , Fatores de Terminação de Peptídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma/genética , Regiões 3' não Traduzidas , Biologia Computacional , Humanos , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA de Transferência/genética , Ribossomos/genética , Saccharomyces cerevisiae/genéticaRESUMO
Ribosomes associated with nonsense-mediated decay factors Upf1, Upf2, or Upf3 were purified by immunoprecipitation, and enrichment and stoichiometry of Upf factors and ribosomal proteins were analyzed by western blot and mass spectrometry. Using a small RNA library preparation protocol that eliminates in-gel RNA and cDNA size selection and incorporates four random nucleotides on each side of the ribosome-protected RNA fragment allowed recovery, detection, and analysis of all size classes of protected fragments from a sample simultaneously.
Assuntos
Regulação Fúngica da Expressão Gênica , RNA Helicases/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Códon sem Sentido , Imunoprecipitação/métodos , Degradação do RNAm Mediada por Códon sem Sentido , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Helicases/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/classificação , Ribossomos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Cytoplasmic poly(A)-binding protein (PABPC; Pab1 in yeast) is thought to be involved in multiple steps of post-transcriptional control, including translation initiation, translation termination, and mRNA decay. To understand these roles of PABPC in more detail for endogenous mRNAs, and to distinguish its direct effects from indirect effects, we have employed RNA-Seq and Ribo-Seq to analyze changes in the abundance and translation of the yeast transcriptome, as well as mass spectrometry to assess the abundance of the components of the yeast proteome, in cells lacking the PAB1 gene. We observed drastic changes in the transcriptome and proteome, as well as defects in translation initiation and termination, in pab1Δ cells. Defects in translation initiation and the stabilization of specific classes of mRNAs in pab1Δ cells appear to be partly indirect consequences of reduced levels of specific initiation factors, decapping activators, and components of the deadenylation complex in addition to the general loss of Pab1's direct role in these processes. Cells devoid of Pab1 also manifested a nonsense codon readthrough phenotype indicative of a defect in translation termination, but this defect may be a direct effect of the loss of Pab1 as it could not be attributed to significant reductions in the levels of release factors.
RESUMO
In addition to their well-documented roles in the promotion of nonsense-mediated mRNA decay (NMD), yeast Upf proteins (Upf1, Upf2/Nmd2, and Upf3) also manifest translational regulatory functions, at least in vitro, including roles in premature translation termination and subsequent reinitiation. Here, we find that all upf Delta strains also fail to reinitiate translation after encountering a premature termination codon (PTC) in vivo, a result that led us to seek a unifying mechanism for all of these translation phenomena. Comparisons of the in vitro translational activities of wild-type (WT) and upf1 Delta extracts were utilized to test for a Upf1 role in post-termination ribosome reutilization. Relative to WT extracts, non-nucleased extracts lacking Upf1 had approximately twofold decreased activity for the translation of synthetic CAN1/LUC mRNA, a defect paralleled by fewer ribosomes per mRNA and reduced efficiency of the 60S joining step at initiation. These deficiencies could be complemented by purified FLAG-Upf1, or 60S subunits, and appeared to reflect diminished cycling of ribosomes from endogenous PTC-containing mRNAs to exogenously added synthetic mRNA in the same extracts. This hypothesis was tested, and supported, by experiments in which nucleased WT or upf1 Delta extracts were first challenged with high concentrations of synthetic mRNAs that were templates for either normal or premature translation termination and then assayed for their capacity to translate a normal mRNA. Our results indicate that Upf1 plays a key role in a mechanism coupling termination and ribosome release at a PTC to subsequent ribosome reutilization for another round of translation initiation.
Assuntos
Códon sem Sentido , Biossíntese de Proteínas , RNA Helicases/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismoRESUMO
Nonsense-mediated messenger RNA decay (NMD) is triggered by premature translation termination, but the features distinguishing premature from normal termination are unknown. One model for NMD suggests that decay-inducing factors bound to mRNAs during early processing events are routinely removed by elongating ribosomes but remain associated with mRNAs when termination is premature, triggering rapid turnover. Recent experiments challenge this notion and suggest a model that posits that mRNA decay is activated by the intrinsically aberrant nature of premature termination. Here we use a primer extension inhibition (toeprinting) assay to delineate ribosome positioning and find that premature translation termination in yeast extracts is indeed aberrant. Ribosomes encountering premature UAA or UGA codons in the CAN1 mRNA fail to release and, instead, migrate to upstream AUGs. This anomaly depends on prior nonsense codon recognition and is eliminated in extracts derived from cells lacking the principal NMD factor, Upf1p, or by flanking the nonsense codon with a normal 3'-untranslated region (UTR). Tethered poly(A)-binding protein (Pab1p), used as a mimic of a normal 3'-UTR, recruits the termination factor Sup35p (eRF3) and stabilizes nonsense-containing mRNAs. These findings indicate that efficient termination and mRNA stability are dependent on a properly configured 3'-UTR.
Assuntos
Regiões 3' não Traduzidas/metabolismo , Códon sem Sentido/genética , Terminação Traducional da Cadeia Peptídica/genética , Estabilidade de RNA , Saccharomyces cerevisiae/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Sítios de Ligação , Extratos Celulares , Cicloeximida/farmacologia , RNA Fúngico/genética , RNA Fúngico/metabolismoRESUMO
RNA helicases are involved in almost every aspect of RNA metabolism, yet very little is known about the regulation of this class of enzymes. In Saccharomyces cerevisiae, the stability and translational fidelity of nonsense-containing mRNAs are controlled by the group I RNA helicase Upf1 and the proteins it interacts with, Upf2 and Upf3. Combining the yeast two-hybrid system with genetic analysis, we show here that the cysteine- and histidine-rich (CH) domain and the RNA helicase domain of yeast Upf1 can engage in two new types of molecular interactions: an intramolecular interaction between these two domains and self-association of each of these domains. Multiple observations indicate that these molecular interactions are crucial for Upf1 regulation. First, coexpression of the CH domain and the RNA helicase domain in trans can reconstitute Upf1 function in both promoting nonsense-mediated mRNA decay (NMD) and preventing nonsense suppression. Second, mutations that disrupt Upf1 intramolecular interaction cause loss of Upf1 function. These mutations weaken Upf2 interaction and, surprisingly, promote Upf1 self-association. Third, the genetic defects resulting from deficiency in Upf1 intramolecular interaction or RNA binding are suppressed by expression of Upf2. Collectively, these data reveal a set of sequential molecular interactions and their roles in regulating Upf1 function during activation of NMD and suggest that cis intramolecular interaction and trans self-association may be general mechanisms for regulation of RNA helicase functions.
Assuntos
RNA Helicases/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Substituição de Aminoácidos , Mutagênese Sítio-Dirigida , Terminação Traducional da Cadeia Peptídica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Técnicas do Sistema de Duplo-HíbridoRESUMO
The ability to map the position of ribosomes and their associated factors on mRNAs is critical for an understanding of translation mechanisms. Earlier approaches to monitoring these important cellular events characterized nucleotide sequences rendered nuclease-resistant by ribosome binding. While these approaches furthered our understanding of translation initiation and ribosome pausing, the pertinent techniques were technically challenging and not widely applied. Here we describe an alternative assay for determining the mRNA sites at which ribosomes or other factors are bound. This approach uses primer extension inhibition, or "toeprinting," to map the 3' boundaries of mRNA-associated complexes. This methodology, previously used to characterize initiation mechanisms in prokaryotic and eukaryotic systems, is used here to gain an understanding of two interesting translational regulatory phenomena in the fungi Neurospora crassa and Saccharomyces cerevisiae: (a) regulation of translation in response to arginine concentration by an evolutionarily conserved upstream open reading frame, and (b) atypical termination events that occur as a consequence of the presence of premature stop codons.