Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 604(7906): 474-478, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444324

RESUMO

Three-dimensional (3D) printing has exploded in interest as new technologies have opened up a multitude of applications1-6, with stereolithography a particularly successful approach4,7-9. However, owing to the linear absorption of light, this technique requires photopolymerization to occur at the surface of the printing volume, imparting fundamental limitations on resin choice and shape gamut. One promising way to circumvent this interfacial paradigm is to move beyond linear processes, with many groups using two-photon absorption to print in a truly volumetric fashion3,7-9. Using two-photon absorption, many groups and companies have been able to create remarkable nanoscale structures4,5, but the laser power required to drive this process has limited print size and speed, preventing widespread application beyond the nanoscale. Here we use triplet fusion upconversion10-13 to print volumetrically with less than 4 milliwatt continuous-wave excitation. Upconversion is introduced to the resin by means of encapsulation with a silica shell and solubilizing ligands. We further introduce an excitonic strategy to systematically control the upconversion threshold to support either monovoxel or parallelized printing schemes, printing at power densities several orders of magnitude lower than the power densities required for two-photon-based 3D printing.

2.
J Am Chem Soc ; 143(23): 8647-8653, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993693

RESUMO

Nanocrystals based on halide perovskites offer a promising material platform for highly efficient lighting. Using transient optical spectroscopy, we study excitation recombination dynamics in manganese-doped CsPb(Cl,Br)3 perovskite nanocrystals. We find an increase in the intrinsic excitonic radiative recombination rate upon doping, which is typically a challenging material property to tailor. Supported by ab initio calculations, we can attribute the enhanced emission rates to increased charge carrier localization through lattice periodicity breaking from Mn dopants, which increases the overlap of electron and hole wave functions locally and thus the oscillator strength of excitons in their vicinity. Our report of a fundamental strategy for improving luminescence efficiencies in perovskite nanocrystals will be valuable for maximizing efficiencies in light-emitting applications.

3.
Langmuir ; 37(44): 12961-12971, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34714089

RESUMO

In this paper, two biosystems based on filamentous fungi and Pd nanoparticles (NPs) were synthesized and structurally characterized. In the first case, results concerning the integration and distribution of Pd-NPs on Phialomyces macrosporus revealed that nanoparticles are accumulated on the cell wall, keeping the cytoplasm isolated from abiotic particles. However, the Penicillium sp. species showed an unexpected internalization of Pd-NPs in the fungal cytosol, becoming a promising biosystem to further studies of in vivo catalytic reactions. Next, we report a new solution-based strategy to prepare palladized biohybrids through sequential reduction of Pd2+ ions over previously harvested fungus/Au-NP composites. The chemical composition and the morphology of the biohybrid surface were characterized using a combination of scanning electron microscopy, transmission electron microscopy, and photoelectron spectroscopy. The deposition of Pd0 over the fungal surface produced biohybrids with a combination of Au and Pd in the NPs. Interestingly, other chemical species such as Au+ and Pd2+ are also observed on the outermost wall of microorganisms. Finally, the application of A. niger/AuPd-NP biohybrids in the 3-methyl-2-buten-1-ol hydrogenation reaction is presented for the first time. Biohybrids with a high fraction of Pd0 are active for this catalytic reaction.


Assuntos
Fungos , Paládio , Catálise , Microscopia Eletrônica de Transmissão , Espectroscopia Fotoeletrônica
4.
J Chem Phys ; 152(4): 044202, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007073

RESUMO

Perovskites have proven to be a promising candidate for highly efficient solar cells, light-emitting diodes, and x-ray detectors, overcoming limitations of inorganic semiconductors. However, they are notoriously unstable. The main reason for this instability is the migration of mobile ions through the device during operation as they are mixed ionic-electronic conductors. Here, we show how measuring the capacitance in both the frequency and the time domain can be used to study ionic dynamics within perovskite-based devices, quantifying activation energy, diffusion coefficient, sign of charge, concentration, and the length of the ionic double layer in the vicinity of the interfaces. Measuring the transient of the capacitance furthermore allows for distinguishing between ionic and electronic effects.

5.
J Am Chem Soc ; 141(23): 9180-9184, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31184152

RESUMO

Triplet fusion upconversion, the conversion of two low-energy photons into one higher-energy photon via excitonic intermediates, has the potential to revolutionize fields as diverse as biological imaging, photovoltaics, and optogenetics. However, important hurdles to widespread application still exist; for example, the vast majority of demonstrations are in nonpolar solvents, limiting applications. Furthermore, the necessary high concentrations of dyes limit optical penetration depth. Efforts toward aqueous solutions utilizing micelles and other nanoencapsulants have been limited by poor efficiencies or scatter from the nanoparticles. Here, we demonstrate a facile micellular fabrication method that drives a high boiling point solvent into the core of a block copolymer micelle, greatly reducing molecular aggregation. We show that this simple preparation is scalable and provides benefits across five different colors of photon upconversion. We expect this simple, user-friendly, and high-performance system to aid a multitude of photon upconversion applications, in particular, for optogenetics, photodynamic therapy, and photochemistry.


Assuntos
Nanoestruturas/química , Processos Fotoquímicos , Fótons , Água , Corantes/química , Transferência de Energia , Optogenética , Fotoquimioterapia
6.
Langmuir ; 30(47): 14352-9, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25369560

RESUMO

Plasmonic enhancement is an attractive method for improving the efficiency of dye-sensitized solar cells (DSSCs). Plasmonic materials with sharp features, such as triangular metal nanoparticles, show stronger plasmonic effects than their spherical analogues; however, these nanoparticles are also often thermally unstable. In this work, we investigated the thermal stability of Au@SiO2 triangular nanoprisms by annealing at different temperatures. Morphological changes were observed at temperatures greater than 250 °C, which resulted in a blue shift of the localized surface plasmon resonance (LSPR). Annealing at 450 °C led to a further blue shift; however, this resulted in better overlap of the LSPR with the absorption spectrum of black dye. By introducing 0.05% (w/w) Au@SiO2 nanoprisms into DSSCs, we were able to achieve a panchromatic enhancement of the light-harvesting efficiency. This led to a 15% increase in the power conversion efficiency from 3.9 ± 0.6% to 4.4 ± 0.4%.


Assuntos
Ouro/química , Dióxido de Silício/química , Temperatura
7.
ACS Nano ; 18(2): 1647-1657, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38166382

RESUMO

Lead-free low-dimensional copper-based metal halides are promising luminescent materials for broadband LEDs owing to their broad self-trapped exciton (STE) emission. However, recently, in 1D CsCu2I3, a discrepancy between their electroluminescence (EL) and photoluminescence (PL) has been observed. As a result, the overall output color from LEDs is significantly different than the anticipated emission. To unveil the origin of this discrepancy, here, we provide comprehensive analyses and show that the shift in the EL is caused neither by any structural/optical interactions between CsCu2I3 and electron transport layers (ETL) nor by the degradation of 1D CsCu2I3. Instead, it depends on the carrier imbalance on CsCu2I3, mainly due to the difference in the electron mobility of the ETLs and the electron density on the CsCu2I3 layer. By varying the ETLs, different colored 1D CsCu2I3 LEDs with peaks at 556, 590, and 647 nm are fabricated, and a maximum luminance of over 2000 cd/m2 is achieved for a 556 nm LED. Further, by limiting the electron mobility and injection to 1D CsCu2I3 using an insulating LiF layer at the CsCu2I3/ETL interface, more red-shifted LEDs are achieved confirming the critical role of electron density on the EL characteristics of 1D CsCu2I3.

8.
JACS Au ; 4(3): 1229-1242, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38559743

RESUMO

Luminescence quenching by hole transport layers (HTLs) is one of the major issues in developing efficient perovskite light-emitting diodes (PeLEDs), which is particularly prominent in blue-emitting devices. While a variety of material systems have been used as interfacial layers, the origin of such quenching and the type of interactions between perovskites and HTLs are still ambiguous. Here, we present a systematic investigation of the luminescence quenching of CsPbBr3 by a commonly employed hole transport polymer, poly[(9,9-dioctylfluorenyl-2,7diyl)-co-(4,4'-(N-(4-sec-butylphenyl) diphenylamine)] (TFB), in LEDs. Strong and weak quantum-confined CsPbBr3 (nanoplatelets (NPLs)/nanocrystals (NCs)) are rationally selected to study the quenching mechanism by considering the differences in their morphology, energy level alignments, and quantum confinement. The steady-state and time-resolved Stern-Volmer plots unravel the dominance of dynamic and static quenching at lower and higher concentrations of TFB, respectively, with a maximum quenching efficiency of 98%. The quenching rate in NCs is faster than that in NPLs owing to their longer PL lifetimes and weak quantum confinement. The ultrafast transient absorption results support these dynamics and rule out the involvement of Forster or Dexter energy transfer. Finally, the 1D 1H and 2D nuclear overhauser effect spectroscopy nuclear magnetic resonance (NOESY NMR) study confirms the exchange of native ligands at the NCs surface with TFB, leading to dark CsPbBr3-TFB ensemble formation accountable for luminescence quenching. This highlights the critical role of the triarylamine functional group on TFB (also the backbone of many HTLs) in the quenching process. These results shed light on the underlying reasons for the luminescence quenching in PeLEDs and will help to rationally choose the interfacial layers for developing efficient LEDs.

9.
Artigo em Inglês | MEDLINE | ID: mdl-23485236

RESUMO

The toxicity effect due to chronic exposure of ZnO nanoparticles (NPs) was systematically studied by repeatedly treating different lower concentrations of ZnO nanoparticles with culture media of E. coli strain. The chronic exposure of ZnO NPs of concentrations below minimum inhibitory concentration (MIC) exhibited higher toxicity than the single exposure of higher concentrations. Most striking result was 57% inhibition of growth corresponding to chronic exposure of 0.06 mg/mL of ZnO NPs which was two folds more than that exhibited by single exposure of 0.30 mg/mL ZnO NPs. The toxicity of ZnO NPs in E. coli was studied in the light of formation of reactive oxygen species (ROS), measured as malondialdehyde (MDA) equivalent by thiobarbituric acid-ROS (TBARS) assay, and effect of Zn dissolution from ZnO NPs. Higher inhibition of growth for the chronic exposure batches were correlated with higher ROS generation, which subsequently contributed to cause membrane lipid peroxidation, confirmed from observation of cell wall deformation by scanning electron microscopy study and energy dispersive X-ray analysis showed adherence of ZnO NPs on cell wall. The possibility of membrane lipid peroxidation was addressed by revealing in vitro oxidation of oleic acid, which is a monounsaturated fatty acid. Further in this study we have shown that the dissolution of ZnO NPs at pH 7.4 was not significant to cause Zn-induced toxicity.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/toxicidade , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Óxido de Zinco/farmacologia , Óxido de Zinco/toxicidade , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Peroxidação de Lipídeos , Malondialdeído/metabolismo , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Ácido Oleico , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Testes de Toxicidade Crônica
10.
J Vis Exp ; (187)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36155426

RESUMO

Triplet fusion upconversion (UC) allows for the generation of one high energy photon from two low energy input photons. This well-studied process has significant implications for producing high energy light beyond a material's surface. However, the deployment of UC materials has been stymied due to poor material solubility, high concentration requirements, and oxygen sensitivity, ultimately resulting in reduced light output. Toward this end, nanoencapsulation has been a popular motif to circumvent these challenges, but durability has remained elusive in organic solvents. Recently, a nanoencapsulation technique was engineered to tackle each of these challenges, whereupon an oleic acid nanodroplet containing upconversion materials was encapsulated with a silica shell. Ultimately, these nanocapsules (NCs) were durable enough to enable triplet fusion upconversion-facilitated volumetric three-dimensional (3D) printing. By encapsulating upconversion materials with silica and dispersing them in a 3D printing resin, photopatterning beyond the surface of the printing vat was made possible. Here, video protocols for the synthesis of upconversion NCs are presented for both small-scale and large-scale batches. The outlined protocols serve as a starting point for adapting this encapsulation scheme to multiple upconversion schemes for use in volumetric 3D printing applications.


Assuntos
Nanocápsulas , Ácido Oleico , Oxigênio , Dióxido de Silício , Solventes
11.
ACS Energy Lett ; 7(1): 358-365, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35059502

RESUMO

Halide mixing is one of the most powerful techniques to tune the optical bandgap of metal-halide perovskites. However, halide mixing has commonly been observed to result in phase segregation, which reduces excited-state transport and limits device performance. While the current emphasis lies on the development of strategies to prevent phase segregation, it remains unclear how halide mixing may affect excited-state transport even if phase purity is maintained. Here, we study exciton transport in phase pure mixed-halide 2D perovskites of (PEA)2Pb(I1-x Br x )4. Using transient photoluminescence microscopy, we show that, despite phase purity, halide mixing inhibits exciton transport. We find a significant reduction even for relatively low alloying concentrations. By performing Brownian dynamics simulations, we are able to reproduce our experimental results and attribute the decrease in diffusivity to the energetically disordered potential landscape that arises due to the intrinsic random distribution of alloying sites.

12.
Adv Mater ; 30(20): e1706226, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575250

RESUMO

Light-emitting diodes utilizing perovskite nanocrystals have generated strong interest in the past several years, with green and red devices showing high efficiencies. Blue devices, however, have lagged significantly behind. Here, it is shown that the device architecture plays a key role in this lag and that NiOx , a transport layer in one of the highest efficiency devices to date, causes a significant reduction in perovskite luminescence lifetime. An alternate transport layer structure which maintains robust nanocrystal emission is proposed. Devices with this architecture show external quantum efficiencies of 0.50% at 469 nm, seven times higher than state-of-the-art devices at that wavelength. Finally, it is demonstrated that this architecture enables efficient devices across the entire blue-green portion of the spectrum. The improvements demonstrated here open the door to efficient blue perovskite light-emitting diodes.

13.
Nanoscale ; 8(12): 6300-7, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26411485

RESUMO

Due to the hygroscopic nature of organolead halide perovskites, humidity is one of the most important factors affecting the efficiency and longevity of perovskite solar cells. Although humidity has a long term detrimental effect on device performance, it also plays a key role during the initial growth of perovskite crystals. Here we demonstrate that atmospheric relative humidity (RH) plays a key role during the formation of perovskite thin films via the sequential deposition technique. Our results indicate that the RH has a substantial impact on the crystallization process, and hence on device performance. SEM and pXRD analysis show an increase in crystallite size with increasing humidity. At low RH, the formation of small cubic crystallites with large gaps between them is observed. The presence of these voids adversely affects device performance and leads to substantial hysteresis in the device. At higher RH, the perovskite crystals are larger in size, with better connectivity between the crystallites. This produced efficient planar heterojunction solar cells with low hysteresis. By careful control of the RH during the cell fabrication process, efficiencies of up to 12.2% are reached using P3HT as the hole-transport material.

14.
Dalton Trans ; 45(24): 9827-34, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26875498

RESUMO

Triangular silver nanoparticles are promising materials for light harvesting applications because of their strong plasmon bands; these absorption bands are highly tunable, and can be varied over the entire visible range based on the particle size. A general concern with these materials is that they are unstable at elevated temperatures. When thermally annealed, they suffer from changes to the particle morphology, which in turn affects their optical properties. Because of this stability issue, these materials cannot be used in applications requiring elevated temperatures. In order to address this problem, it is important to first understand the degradation mechanism. Here, we measure the changes in particle morphology, oxidation state, and coordination environment of Ag@SiO2 nanotriangles caused by thermal annealing. UV-vis spectroscopy and TEM reveal that upon annealing the Ag@SiO2 nanotriangles in air, the triangular cores are truncated and smaller nanoparticles are formed. Ag K-edge X-ray absorption spectroscopy (XANES and EXAFS) shows that the small particles consist of Ag(0), and that there is a decrease in the Ag-Ag coordination number with an increase in the annealing temperature. We hypothesize that upon annealing Ag in air, it is first oxidized to AgxO, after which it subsequently decomposes back to well-dispersed Ag(0) nanoparticles. In contrast, when the Ag@SiO2 nanotriangles are annealed in N2, since there is no possibility of oxidation, no small particles are formed. Instead, the triangular core rearranges to form a disc-like shape.

15.
J Photochem Photobiol B ; 126: 105-11, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23911862

RESUMO

Antibacterial activity of ZnO nanoparticles (NPs) triggered by generation of reactive oxygen species (ROS) depends on the fate of photoexcited charge carriers. Batches of wide band gap ZnO NPs of 7-9nm sizes, capped with polyethylene glycol (PEG), ascorbic acid (AsA), mercaptoacetic acid (MAA) and polysorbate 80 (T-80) were synthesized by precipitation method. These capped ZnO NPs exhibited ROS induced antibacterial activity, where the ROS was measured by TBARS assay. The PEG capped and AsA capped ZnO NPs exhibited weaker antibacterial activity and were correlated with strong and broad green emission peak owing to oxygen vacancies. The oxygen vacancies were trap sites of photoexcited electrons which inhibited interaction between the photoexcited electrons and oxygen on the surface of the ZnO NPs and accounted for lesser ROS generation and subsequently weaker antibacterial activity. Contrastingly MAA capped and T-80 capped ZnO NPs did not exhibit significant green emission peak, but exhibited 13% and 43% inhibition of growth of E. coli, respectively. The lack of oxygen vacancy defects in MAA capped and T-80 capped ZnO NPs perhaps led to lesser trapping of charge carriers, which is favorable for higher ROS generation and consequently higher antibacterial activity.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Ácido Ascórbico/química , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fenômenos Ópticos , Polietilenoglicóis/química , Polissorbatos/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Tioglicolatos/química
16.
ACS Appl Mater Interfaces ; 5(21): 11044-51, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24102234

RESUMO

Recently, plasmonic metal nanoparticles have been shown to be very effective in increasing the light harvesting efficiency (LHE) of dye-sensitized solar cells (DSSCs). Most commonly, spherical nanoparticles composed of silver or gold are used for this application; however, the localized surface plasmon resonances of these isotropic particles have maxima in the 400-550 nm range, limiting any plasmonic enhancements to wavelengths below 600 nm. Herein, we demonstrate that the incorporation of anisotropic, triangular silver nanoprisms in the photoanode of DSSCs can dramatically increase the LHE in the red and near-infrared regions. Core-shell Ag@SiO2 nanoprisms were synthesized and incorporated in various quantities into the titania pastes used to prepare the photoanodes. This optimization led to an overall 32 ± 17% increase in the power conversion efficiency (PCE) of cells made using 0.05% (w/w) of the Ag@SiO2 composite. Measurements of the incident photon-to-current efficiency provided further evidence that this increase is a result of improved light harvesting in the red and near-infrared regions. The effect of shell thickness on nanoparticle stability was also investigated, and it was found that thick (30 nm) silica shells provide the best protection against corrosion by the triiodide-containing electrolyte, while still enabling large improvements in PCE to be realized.

17.
Colloids Surf B Biointerfaces ; 94: 143-50, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22348987

RESUMO

Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium.


Assuntos
Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/química , Antibacterianos , Antioxidantes/farmacologia , Meios de Cultura , Relação Dose-Resposta a Droga , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Histidina/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/análise , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Óxido de Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa