Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37446653

RESUMO

For the creation of adaptable carbonyl compounds in organic synthesis, the oxidation of alcohols is a crucial step. As a sustainable alternative to the harmful traditional oxidation processes, transition-metal catalysts have recently attracted a lot of interest in acceptorless dehydrogenation reactions of alcohols. Here, using well-defined, air-stable palladium(II)-NHC catalysts (A-F), we demonstrate an effective method for the catalytic acceptorless dehydrogenation (CAD) reaction of secondary benzylic alcohols to produce the corresponding ketones and molecular hydrogen (H2). Catalytic acceptorless dehydrogenation (CAD) has been successfully used to convert a variety of alcohols, including electron-rich/electron-poor aromatic secondary alcohols, heteroaromatic secondary alcohols, and aliphatic cyclic alcohols, into their corresponding value-added ketones while only releasing molecular hydrogen as a byproduct.


Assuntos
Álcoois , Cetonas , Hidrogênio , Catálise , Paládio
2.
J Org Chem ; 86(23): 16558-16572, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34780178

RESUMO

A ytterbium triflate-catalyzed diastereoselective [3 + 2] cycloaddition of quinoxalinones with donor-acceptor cyclopropanes and cyclobutanes is described. A series of tetrahydropyrrolo-quinoxalinone derivatives were obtained in high yields (up to 96%) with excellent diastereoselectivities (up to 46:1). Other medicinally important heterocycles like benzoxazinone, isoquinoxalinone, and dibenzoxazepine derivatives were also suitable for the desired annulation reaction. The current method is applicable for the scale-up reaction. Further, the utility of this annulation reaction is demonstrated by the synthesis of densely functionalized proline derivatives.


Assuntos
Ciclopropanos , Quinoxalinas , Catálise , Reação de Cicloadição , Estrutura Molecular , Estereoisomerismo
3.
Inorg Chem ; 55(6): 2882-93, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26928799

RESUMO

Well-defined palladium N-heterocyclic carbene (NHC) complexes were employed in the one-pot tandem Heck alkynylation/cyclization sequence for preparing biologically relevant benzofuran compounds under copper-free conditions in a time-efficient step-reduced fashion. In particular, a series of binuclear palladium complexes, 1b-1e and 2b-2e, of the alkyl-bridged NHC ligands, namely, {1,1'-di-R1-4,4'-R2-di-1,2,4-triazoline-5,5'-diylid-2-ene] (R1 = i-Pr; R2 = -(CH2)2-, -(CH2)3-), and their mononuclear analogues, trans-(NHC)PdBr2(pyridine) (3b) and cis-(NHC)PdBr2(PPh3) (3c), successfully catalyzed the one-pot tandem Heck alkynylation/cyclization reaction of 2-iodophenol with a variety of terminal alkyne substrates, yielding 2-substituted benzofuran derivatives. The mononuclear complexes 3b and 3c were nearly half as active as the representative dinuclear analogue 1c under analogous reaction conditions, thereby implying that, at the same mole percent of the palladium loading, the monometallic 3b and 3c and the bimetallic 1c complexes were equally effective as catalysts. The two sites of the bimetallic complex 1c performed as two separate independent catalytic sites, displaying no cooperativity effect in the catalysis. Finally, the practical utility of the aforementioned catalysts was demonstrated for a representative catalyst 1c through the convenient synthesis of a key intermediate, 3-[2-(benzo[d][1,3]dioxol-5-yl)-7-methoxybenzofuran-5-yl]propan-1-ol, in a total-synthesis protocol of the natural product Egonol.


Assuntos
Alcinos/química , Benzofuranos/química , Compostos Heterocíclicos/química , Metano/análogos & derivados , Paládio/química , Ciclização , Espectroscopia de Ressonância Magnética , Metano/química , Modelos Moleculares , Espectrometria de Massas por Ionização por Electrospray
4.
Org Lett ; 24(48): 8729-8734, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36444657

RESUMO

A copper-catalyzed protocol furnishing N-arylated sulfoximines has been developed via dual N-H/C-H activation. Arylalkyl- and less reactive diarylsulfoximines were efficiently coupled with privileged scaffolds like indolines, indoles, and N-Ar-7-azaindoles. Sulfoximines based on medicinally relevant scaffolds (phenothiazine, dibenzothiophene, thioxanthenone) were also well tolerated. Detailed mechanistic studies indicate that the deprotometalation and protodemetalation step is the reversible step.

5.
Chem Commun (Camb) ; 58(21): 3481-3484, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35191453

RESUMO

A method to functionalize the arene ring of pirfenidone has been demonstrated using pyridone as a directing group. Unlike the functionalization of the pyridone nucleus, the method demonstrated here is the alkenylation of the N-aryl ring of pirfenidone with internal alkynes using ruthenium catalyst. High functional group tolerance, simple reaction conditions and site-selective functionalization permit the synthesis of new analogues of drugs in a step-economical manner. The data of the control experiments suggest the possibilities of a base-assisted internal electrophilic substitution (BIES) pathway.

6.
Org Lett ; 24(15): 2783-2787, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35394290

RESUMO

A palladium catalyzed directing group assisted cross-coupling of aliphatic aziridines with indole, indoline, tetrahydroquinoline, and aniline has been developed to furnish the corresponding ß-arylethylamine derivatives. The substrate scope was very general, and the protocol was also tolerated in the presence of various external additives. Control experiments suggested that the C-H cleavage step is the rate-determining step.


Assuntos
Aziridinas , Triptaminas , Catálise , Indóis , Paládio
7.
ChemSusChem ; 12(15): 3463-3467, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31240858

RESUMO

Although α-alkylation of ketones with primary alcohols by transition-metal catalysis is well-known, the same process with secondary alcohols is arduous and complicated by self-condensation. Herein a well-defined, high-valence cobalt(III)-catalyst was applied for successful α-alkylation of ketones with secondary alcohols. A wide-variety of secondary alcohols, which include cyclic, acyclic, symmetrical, and unsymmetrical compounds, was employed as alkylating agents to produce ß-alkyl aryl ketones.

8.
Chem Asian J ; 13(17): 2445-2448, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29863804

RESUMO

A novel, well-defined molecular Cp*CoIII complex was isolated and structurally characterized for the first time. The efficiency of this cobalt catalyst was demonstrated in the alcohol dehydrogenation and dehydrative coupling of secondary alcohols under mild conditions into ketones and ethers, respectively.

9.
ACS Omega ; 3(2): 1740-1756, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458491

RESUMO

A series of palladium acyclic diaminocarbene (ADC) complexes of the type cis-[(R1NH)(R2)methylidene]PdCl2(CNR1) [R1 = 2,4,6-(CH3)3C6H2: R2 = NC5H10 (2); NC4H8 (3); NC4H8O (4)] were used not only to perform the Csp2 -Csp Hiyama coupling between aryl iodide and triethoxysilylalkynes but also to subsequently carry out the one-pot tandem Hiyama alkynylation/cyclization reaction between 2-iodophenol and triethoxysilylalkynes, giving a convenient time-efficient access to the biologically relevant benzofuran compounds. The palladium ADC complexes (2-4) were conveniently synthesized by the nucleophilic addition of secondary amines, namely, piperidine, pyrrolidine, and morpholine on the cis-{(2,4,6-(CH3)3C6H2)NC}2PdCl2 in moderate yields (ca. 61-66%).

10.
J Inorg Biochem ; 185: 30-42, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29738923

RESUMO

Heterodinuclear mixed valence [Zn(II)-Fe(III)] and the homodinuclear [Zn(II)-Zn(II)] and [Ni(II)-Ni(II)] complexes of a bicompartmental ligand containing a bridging phenoxy as a O-donor and four pyridyl moieties and two amine moieties as the N-donors exhibit phosphoester hydrolysis activity similar to the hydrolase family of enzymes. While the heterodinuclear [Zn(II)-Fe(III)] (2) complex was obtained by the sequential addition of Fe(NO3)3∙9H2O and Zn(OAc)2∙2H2O to the ligand 2,6­bis{[bis(2­pyridylmethyl)amino]methyl}­4­t­butylphenol (HL) (1) in moderate yield of 37%, the homodinuclear [Zn(II)-Zn(II)] (3) and [Ni(II)-Ni(II)] (4) complexes were obtained by the direct reaction of the ligand (1) with Zn(OAc)2∙2H2O and Ni(OAc)2∙2H2O respectively, in good to moderate yields (43-63%). Based on the spectrophotometric titration and the mass spectrometry studies, a monoaquated and dihydroxo species 2C, 3C and 4C has been identified as the catalytically active species responsible for the phosphodiester hydrolysis of the bis(2,4 - dinitrophenyl)phosphate (2,4 - BDNPP) substrate in the pH range 5.5-10.5. The kinetic studies further revealed that the homodinuclear [Ni(II)-Ni(II)] complexes (4) (kcat = 1.26 × 10-2 s-1) is more active by 39 times than the homodinuclear [Zn(II)-Zn(II)] complexes (3) (kcat = 3.20 × 10-4 s-1) and 27 times more active than the heterodinuclear [Zn(II)-Fe(III)] complex (2) (kcat = 4.62 × 10-4 s-1) in the phosphodiester hydrolysis activity. Significantly enough, the catalyst-substrate adduct species (2E, 2F and 3F) containing a metal bound bis(2,4­dinitrophenyl)phosphate has been detected by mass spectrometry for the first time.


Assuntos
Complexos de Coordenação/química , Hidrolases/química , Metais/química , Mimetismo Molecular , Óxidos de Nitrogênio/química , Catálise , Complexos de Coordenação/síntese química , Cristalografia por Raios X , Dimerização , Cinética , Ligantes , Modelos Moleculares , Análise Espectral/métodos , Especificidade por Substrato
11.
ACS Omega ; 2(8): 4632-4646, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023727

RESUMO

Five enantiomeric pairs of palladium complexes of 1,2,4-triazole-derived chiral N-heterocyclic carbene ligands were investigated to probe the influence of chirality on the compound's anticancer activity. Although no chirality-related influence was observed for any of the enantiomeric pair, strong anticancer activity was seen for a particular pair, (1S,2S,5R)-1c and (1R,2R,5S)-1c, which was significantly more active than the benchmark drug cisplatin for human breast cancer cells, MCF-7 (ca. 24-27-fold), and human cervical cancer cells, HeLa (ca. three- to fourfold). Broadening its scope of application, (1R,2R,5S)-1c also exhibited antiproliferative activity against lung cancer (A549), skin cancer (B16F10), and multidrug-resistant mammary tumor (EMT6/AR1) cell lines. Interestingly, (1R,2R,5S)-1c displayed 8- and 16-fold stronger antiproliferative activity toward B16F10 and MCF-7 relative to their respective noncancerous counterparts, L929 (fibroblast skin cells) and MCF10A (epithelial breast cells), thereby upholding the potential of these complexes for further development as anticancer agents. (1R,2R,5S)-1c inhibited tumor-cell proliferation by blocking the cells at the G2 phase. (1R,2R,5S)-1c caused DNA damage in MCF-7 cells, leading to mitochondrial reactive oxygen species production and subsequently cell death. We also present evidence indicating that (1R,2R,5S)-1c induced p53-dependent programmed cell death in MCF-7 cells.

12.
ACS Omega ; 2(8): 4737-4750, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457757

RESUMO

The active site of the purple acid phosphatase enzyme has been successfully modeled by a series of hetero-dinuclear M(II)-Fe(III) [M = Zn, Ni, Co, and Cu] type complexes of an unsymmetrical [N6O] ligand that contained a bridging phenoxide moiety and one imidazoyl and three pyridyl moieties as the terminal N-binding sites. In particular, the hetero-dinuclear complexes, {L[MII(µ-OAc)2FeIII]}(ClO4)2 [M = Zn (3a), Ni (3b), Co (4a), and Cu (4b)], were obtained directly from the phenoxy-bridged ligand (HL), namely 2-{[bis(2-methylpyridyl)amino]methyl}-6-{[((1-methylimidazol-2-yl)methyl)(2-pyridylmethyl)amino]methyl}-4-t-butylphenol (2), upon sequential addition of Fe(ClO4)3·XH2O and M(ClO4)2·6H2O (M = Zn and Ni) or M(OAc)2·XH2O (M = Co and Cu), in a low-to-moderate (ca. 32-53%) yield. The temperature-dependent magnetic susceptibility measurements indicated weak antiferromagnetic coupling interactions occurring between the two metal centers in their high-spin states. All of the 3(a-b) and 4(a-b) complexes successfully carried out the hydrolysis of the bis(2,4-dinitrophenyl)phosphate (2,4-BDNPP) substrate in a mixed CH3CN/H2O (v/v 1:1) medium in the pH range of 5.5-10.5 at room temperature, thereby mimicking the functional activity of the native enzyme. The spectrophotometric titration suggested a monoaquated and dihydroxo species of the type {L[(H2O)MII(µ-OH)FeIII(OH)]}2+ to be the catalytically active species for the phosphodiester hydrolysis reaction within the pH range of ca. 5.80-7.15. Last, the kinetic studies on the hydrolysis of the model substrate, 2,4-BDNPP, divulge a Michaelis-Menten-type behavior for all complexes.

13.
Dalton Trans ; 44(40): 17617-28, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26393962

RESUMO

A series of palladium complexes of the abnormal N-heterocyclic carbene ligands of the type (a-NHC)PdI2(L) [L = NC5H5(1-3)b and PPh3(1-3)c] effectively catalyzed the Hiyama coupling of aryl bromides and iodides with PhSi(OMe)3 under the highly desired fluoride-free conditions. Interestingly enough, the pyridine based trans-(1-3)b complexes and a PPh3 derived cis-3c complex exhibited higher yields than the related PPh3 derived trans-(1-2)c complexes. The superior performances of the pyridine based trans-(1-3)b complexes and the PPh3 derived cis-3c complex have been correlated to a tighter binding of the a-NHC ligand to the palladium center in these complexes, leading to a greater (a-NHC) ligand influence on the metal center partaking in the catalysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa