Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(9): 2175-2193.e21, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38552623

RESUMO

In addition to long-distance molecular motor-mediated transport, cellular vesicles also need to be moved at short distances with defined directions to meet functional needs in subcellular compartments but with unknown mechanisms. Such short-distance vesicle transport does not involve molecular motors. Here, we demonstrate, using synaptic vesicle (SV) transport as a paradigm, that phase separation of synaptic proteins with vesicles can facilitate regulated, directional vesicle transport between different presynaptic bouton sub-compartments. Specifically, a large coiled-coil scaffold protein Piccolo, in response to Ca2+ and via its C2A domain-mediated Ca2+ sensing, can extract SVs from the synapsin-clustered reserve pool condensate and deposit the extracted SVs onto the surface of the active zone protein condensate. We further show that the Trk-fused gene, TFG, also participates in COPII vesicle trafficking from ER to the ER-Golgi intermediate compartment via phase separation. Thus, phase separation may play a general role in short-distance, directional vesicle transport in cells.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório , Retículo Endoplasmático , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Complexo de Golgi/metabolismo , Ratos , Transporte Biológico , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas do Citoesqueleto/metabolismo , Separação de Fases
2.
Mol Cell ; 81(1): 13-24.e7, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33202250

RESUMO

Tethering of synaptic vesicles (SVs) to the active zone determines synaptic strength, although the molecular basis governing SV tethering is elusive. Here, we discover that small unilamellar vesicles (SUVs) and SVs from rat brains coat on the surface of condensed liquid droplets formed by active zone proteins RIM, RIM-BP, and ELKS via phase separation. Remarkably, SUV-coated RIM/RIM-BP condensates are encapsulated by synapsin/SUV condensates, forming two distinct SUV pools reminiscent of the reserve and tethered SV pools that exist in presynaptic boutons. The SUV-coated RIM/RIM-BP condensates can further cluster Ca2+ channels anchored on membranes. Thus, we reconstitute a presynaptic bouton-like structure mimicking the SV-tethered active zone with its one side attached to the presynaptic membrane and the other side connected to the synapsin-clustered SV condensates. The distinct interaction modes between membraneless protein condensates and membrane-based organelles revealed here have general implications in cellular processes, including vesicular formation and trafficking, organelle biogenesis, and autophagy.


Assuntos
Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Canais de Cálcio/genética , Humanos , Camundongos , Ratos , Sinapsinas/genética , Vesículas Sinápticas/genética
3.
Nature ; 611(7937): 827-834, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36418452

RESUMO

Vacuolar-type adenosine triphosphatases (V-ATPases)1-3 are electrogenic rotary mechanoenzymes structurally related to F-type ATP synthases4,5. They hydrolyse ATP to establish electrochemical proton gradients for a plethora of cellular processes1,3. In neurons, the loading of all neurotransmitters into synaptic vesicles is energized by about one V-ATPase molecule per synaptic vesicle6,7. To shed light on this bona fide single-molecule biological process, we investigated electrogenic proton-pumping by single mammalian-brain V-ATPases in single synaptic vesicles. Here we show that V-ATPases do not pump continuously in time, as suggested by observing the rotation of bacterial homologues8 and assuming strict ATP-proton coupling. Instead, they stochastically switch between three ultralong-lived modes: proton-pumping, inactive and proton-leaky. Notably, direct observation of pumping revealed that physiologically relevant concentrations of ATP do not regulate the intrinsic pumping rate. ATP regulates V-ATPase activity through the switching probability of the proton-pumping mode. By contrast, electrochemical proton gradients regulate the pumping rate and the switching of the pumping and inactive modes. A direct consequence of mode-switching is all-or-none stochastic fluctuations in the electrochemical gradient of synaptic vesicles that would be expected to introduce stochasticity in proton-driven secondary active loading of neurotransmitters and may thus have important implications for neurotransmission. This work reveals and emphasizes the mechanistic and biological importance of ultraslow mode-switching.


Assuntos
Encéfalo , Mamíferos , ATPases Vacuolares Próton-Translocadoras , Animais , Trifosfato de Adenosina/metabolismo , Encéfalo/enzimologia , Encéfalo/metabolismo , Mamíferos/metabolismo , Prótons , Vesículas Sinápticas/enzimologia , Vesículas Sinápticas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Neurotransmissores/metabolismo , Transmissão Sináptica , Fatores de Tempo , Cinética
4.
Eur Phys J E Soft Matter ; 47(1): 8, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270681

RESUMO

We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid-liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.

5.
Eur Biophys J ; 51(6): 465-482, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35904588

RESUMO

The size, polydispersity, and electron density profile of synaptic vesicles (SVs) can be studied by small-angle X-ray scattering (SAXS), i.e. by X-ray diffraction from purified SV suspensions in solution. Here we show that size and shape transformations, as they appear in the functional context of these important synaptic organelles, can also be monitored by SAXS. In particular, we have investigated the active uptake of neurotransmitters, and find a mean vesicle radius increase of about 12% after the uptake of glutamate, which indicates an unusually large extensibility of the vesicle surface, likely to be accompanied by conformational changes of membrane proteins and rearrangements of the bilayer. Changes in the electron density profile (EDP) give first indications for such a rearrangement. Details of the protein structure are screened, however, by SVs polydispersity. To overcome the limitations of large ensemble averages and heterogeneous structures, we therefore propose serial X-ray diffraction by single free electron laser pulses. Using simulated data for realistic parameters, we show that this is in principle feasible, and that even spatial distances between vesicle proteins could be assessed by this approach.


Assuntos
Ácido Glutâmico , Vesículas Sinápticas , Transporte Biológico , Proteínas/metabolismo , Espalhamento a Baixo Ângulo , Vesículas Sinápticas/química , Vesículas Sinápticas/metabolismo , Difração de Raios X
6.
Purinergic Signal ; 17(2): 255-271, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33834349

RESUMO

Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.


Assuntos
Encéfalo/fisiopatologia , Guanosina/administração & dosagem , Guanosina/uso terapêutico , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/fisiopatologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Administração Intranasal , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Veias Cerebrais/efeitos dos fármacos , Eletrocoagulação , Eletroencefalografia/efeitos dos fármacos , Lateralidade Funcional/efeitos dos fármacos , AVC Isquêmico/complicações , Masculino , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/prevenção & controle , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
7.
Epilepsia ; 58(10): 1771-1781, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28762469

RESUMO

OBJECTIVES: Glutaric acidemia type I (GA-I) is an inherited neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase (GCDH) and characterized by increased levels of glutaric, 3-OH-glutaric, and glutaconic acids in the brain parenchyma. The increment of these organic acids inhibits glutamate decarboxylase (GAD) and consequently lowers the γ-aminobutyric acid (GABA) synthesis. Untreated patients exhibit severe neurologic deficits during development, including epilepsy, especially following an acute encephalopathy outbreak. In this work, we evaluated the role of the GABAergic system on epileptogenesis in GA-I using the Gcdh-/- mice exposed to a high lysine diet (Gcdh-/- -Lys). METHODS: Spontaneous recurrent seizures (SRS), seizure susceptibility, and changes in brain oscillations were evaluated by video-electroencephalography (EEG). Cortical GABAergic synaptic transmission was evaluated using electrophysiologic and neurochemical approaches. RESULTS: SRS were observed in 72% of Gcdh-/- -Lys mice, whereas no seizures were detected in age-matched controls (Gcdh+/+ or Gcdh-/- receiving normal diet). The severity and number of PTZ-induced seizures were higher in Gcdh-/- -Lys mice. EEG spectral analysis showed a significant decrease in theta and gamma oscillations and predominant delta waves in Gcdh-/- -Lys mice, associated with increased EEG left index. Analysis of cortical synaptosomes revealed a significantly increased percentage of glutamate release and decreased GABA release in Gcdh-/- -Lys mice that were associated with a decrease in cortical GAD immunocontent and activity and confirmed by reduced frequency of inhibitory events in cortical pyramidal cells. SIGNIFICANCE: Using an experimental model with a phenotype similar to that of GA-I in humans-the Gcdh-/- mice under high lysine diet (Gcdh-/- -Lys)-we provide evidence that a reduction in cortical inhibition of Gcdh-/- -Lys mice, probably induced by GAD dysfunction, leads to hyperexcitability and increased slow oscillations associated with neurologic abnormalities in GA-I. Our findings offer a new perspective on the pathophysiology of brain damage in GA-I.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Encefalopatias Metabólicas/genética , Encéfalo/efeitos dos fármacos , Epilepsia/genética , Glutaril-CoA Desidrogenase/deficiência , Glutaril-CoA Desidrogenase/genética , Ácido gama-Aminobutírico/efeitos dos fármacos , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Western Blotting , Encefalopatias Metabólicas/metabolismo , Cromatografia Líquida de Alta Pressão , Epilepsia/metabolismo , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutaril-CoA Desidrogenase/metabolismo , Camundongos , Camundongos Knockout , Pentilenotetrazol/farmacologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Purinergic Signal ; 12(1): 149-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26695181

RESUMO

In addition to its intracellular roles, the nucleoside guanosine (GUO) also has extracellular effects that identify it as a putative neuromodulator signaling molecule in the central nervous system. Indeed, GUO can modulate glutamatergic neurotransmission, and it can promote neuroprotective effects in animal models involving glutamate neurotoxicity, which is the case in brain ischemia. In the present study, we aimed to investigate a new in vivo GUO administration route (intranasal, IN) to determine putative improvement of GUO neuroprotective effects against an experimental model of permanent focal cerebral ischemia. Initially, we demonstrated that IN [(3)H] GUO administration reached the brain in a dose-dependent and saturable pattern in as few as 5 min, presenting a higher cerebrospinal GUO level compared with systemic administration. IN GUO treatment started immediately or even 3 h after ischemia onset prevented behavior impairment. The behavior recovery was not correlated to decreased brain infarct volume, but it was correlated to reduced mitochondrial dysfunction in the penumbra area. Therefore, we showed that the IN route is an efficient way to promptly deliver GUO to the CNS and that IN GUO treatment prevented behavioral and brain impairment caused by ischemia in a therapeutically wide time window.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Guanosina/administração & dosagem , Guanosina/uso terapêutico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Administração Intranasal , Animais , Comportamento Animal , Isquemia Encefálica/psicologia , Infarto Cerebral/patologia , Infarto Cerebral/prevenção & controle , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Guanosina/líquido cefalorraquidiano , Guanosina/farmacocinética , Masculino , Mitocôndrias/efeitos dos fármacos , Fármacos Neuroprotetores/líquido cefalorraquidiano , Fármacos Neuroprotetores/farmacocinética , Ratos , Ratos Wistar , Acidente Vascular Cerebral/psicologia
9.
Autophagy ; : 1-19, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37881948

RESUMO

In neurons, autophagosome biogenesis occurs mainly in distal axons, followed by maturation during retrograde transport. Autophagosomal growth depends on the supply of membrane lipids which requires small vesicles containing ATG9, a lipid scramblase essential for macroautophagy/autophagy. Here, we show that ATG9-containing vesicles are enriched in synapses and resemble synaptic vesicles in size and density. The proteome of ATG9-containing vesicles immuno-isolated from nerve terminals showed conspicuously low levels of trafficking proteins except of the AP2-complex and some enzymes involved in endosomal phosphatidylinositol metabolism. Super resolution microscopy of nerve terminals and isolated vesicles revealed that ATG9-containing vesicles represent a distinct vesicle population with limited overlap not only with synaptic vesicles but also other membranes of the secretory pathway, uncovering a surprising heterogeneity in their membrane composition. Our results are compatible with the view that ATG9-containing vesicles function as lipid shuttles that scavenge membrane lipids from various intracellular membranes to support autophagosome biogenesis.Abbreviations: AP: adaptor related protein complex: ATG2: autophagy related 2; ATG9: autophagy related 9; DNA PAINT: DNA-based point accumulation for imaging in nanoscale topography; DyMIN STED: dynamic minimum stimulated emission depletion; EL: endosome and lysosome; ER: endoplasmic reticulum; GA: Golgi apparatus; iBAQ: intensity based absolute quantification; LAMP: lysosomal-associated membrane protein; M6PR: mannose-6-phosphate receptor, cation dependent; Minflux: minimal photon fluxes; Mito: mitochondria; MS: mass spectrometry; PAS: phagophore assembly site; PM: plasma membrane; Px: peroxisome; RAB26: RAB26, member RAS oncogene family; RAB3A: RAB3A, member RAS oncogene family; RAB5A: RAB5A, member RAS oncogene family; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment receptor; SVs: synaptic vesicles; SYP: synaptophysin; TGN: trans-Golgi network; TRAPP: transport protein particle; VTI1: vesicle transport through interaction with t-SNAREs.

10.
Nat Commun ; 14(1): 6730, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872159

RESUMO

Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.


Assuntos
Sinapsinas , Vesículas Sinápticas , Animais , Vesículas Sinápticas/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais Geneticamente Modificados
11.
Purinergic Signal ; 8(1): 49-58, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21881961

RESUMO

Overstimulation of the glutamatergic system (excitotoxicity) is involved in various acute and chronic brain diseases. Several studies support the hypothesis that guanosine-5'-monophosphate (GMP) can modulate glutamatergic neurotransmission. The aim of this study was to evaluate the effects of chronically administered GMP on brain cortical glutamatergic parameters in mice. Additionally, we investigated the neuroprotective potential of the GMP treatment submitting cortical brain slices to oxygen and glucose deprivation (OGD). Moreover, measurements of the cerebrospinal fluid (CSF) purine levels were performed after the treatment. Mice received an oral administration of saline or GMP during 3 weeks. GMP significantly decreases the cortical brain glutamate binding and uptake. Accordingly, GMP reduced the immunocontent of the glutamate receptors subunits, NR2A/B and GluR1 (NMDA and AMPA receptors, respectively) and glutamate transporters EAAC1 and GLT1. GMP treatment significantly reduced the immunocontent of PSD-95 while did not affect the content of Snap 25, GLAST and GFAP. Moreover, GMP treatment increased the resistance of neocortex to OGD insult. The chronic GMP administration increased the CSF levels of GMP and its metabolites. Altogether, these findings suggest a potential modulatory role of GMP on neocortex glutamatergic system by promoting functional and plastic changes associated to more resistance of mice neocortex against an in vitro excitotoxicity event.

12.
Neurol Sci ; 33(5): 985-97, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22167652

RESUMO

Chronic cerebral hypoperfusion contributes to a cognitive decline related to brain disorders. Its experimental model in rats is a permanent bilateral common carotid artery occlusion (2VO). Overstimulation of the glutamatergic system excitotoxicity due to brain energetic disturbance in 2VO animals seems to play a pivotal role as a mechanism of cerebral damage. The nucleoside guanosine (GUO) exerts extracellular effects including antagonism of glutamatergic activity. Accordingly, our group demonstrated several neuroprotective effects of GUO against glutamatergic excitotoxicity. Therefore, in this study, we evaluated a chronic GUO treatment effects in rats submitted to 2VO. We evaluated the animals performance in the Morris water maze and hippocampal damage by neurons and astrocytes immunohistochemistry. In addition, we investigated the cerebrospinal fluid (CSF) brain derived neurotrophic factor (BDNF) and serum S100B levels. Additionally, the purine CSF and plasma levels were determined. GUO treatment did not prevent the cognitive impairment promoted by 2VO. However, none of the 2VO animals treated with GUO showed differences in the hippocampal regions compared to control, while 20% of 2VO rats not treated with GUO presented loss of pyramidal neurons and increased glial labeling cells in CA1 hippocampal region. In addition, we did not observe differences in CSF BDNF nor serum S100B levels among the groups. Of note, both the 2VO surgery and GUO treatment changed the purine CSF and plasma profile. In conclusion, GUO treatment did not prevent the cognitive impairment observed in 2VO animals, but our data suggest that GUO could be neuroprotective against hippocampal damage induced by 2VO.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Cognição/efeitos dos fármacos , Guanosina/farmacologia , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Cromatografia Líquida de Alta Pressão , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Purinas/sangue , Purinas/líquido cefalorraquidiano , Ratos , Ratos Wistar
13.
Methods Mol Biol ; 2417: 131-145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35099797

RESUMO

Synaptic vesicles (SVs) store neurotransmitters and undergo a fine-tuned regulatory and dynamic cycle of exo- and endocytosis, which is essential for neurotransmission at chemical synapses. The development of protocols for isolating SVs from biological extracts was a fundamental accomplishment since it allowed for characterizing the molecular properties of SVs using biochemical methods. In this chapter, we describe a modified procedure for isolating SVs from a few g of rodent brain and that can be completed within ~12 h. The protocol involves the preparation of isolated nerve terminals from which SVs are released by osmotic shock and then enriched via various centrifugation steps, followed by size exclusion chromatography as final purification step. The final vesicle fraction is 22-fold enriched in SVs over the starting material, and the final yield of SVs obtained using this protocol is approximately 20 µg of protein per gram of mouse brain. The degree of contamination by other organelles and particles monitored by morphology and immunolabeling compares well with that of the classical protocols.


Assuntos
Sinapses , Vesículas Sinápticas , Animais , Encéfalo/metabolismo , Mamíferos , Camundongos , Neurotransmissores/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Vesículas Sinápticas/metabolismo
14.
Neuron ; 110(9): 1483-1497.e7, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35263617

RESUMO

Vesicular transporters (VTs) define the type of neurotransmitter that synaptic vesicles (SVs) store and release. While certain mammalian neurons release multiple transmitters, it is not clear whether the release occurs from the same or distinct vesicle pools at the synapse. Using quantitative single-vesicle imaging, we show that a vast majority of SVs in the rodent brain contain only one type of VT, indicating specificity for a single neurotransmitter. Interestingly, SVs containing dual transporters are highly diverse (27 types) but small in proportion (2% of all SVs), excluding the largest pool that carries VGLUT1 and ZnT3 (34%). Using VGLUT1-ZnT3 SVs, we demonstrate that the transporter colocalization influences the SV content and synaptic quantal size. Thus, the presence of diverse transporters on the same vesicle is bona fide, and depending on the VT types, this may act to regulate neurotransmitter type, content, and release in space and time.


Assuntos
Proteínas de Transporte de Neurotransmissores , Vesículas Sinápticas , Animais , Mamíferos , Proteínas de Membrana Transportadoras , Neurotransmissores , Sinapses , Vesículas Sinápticas/fisiologia , Proteína Vesicular 1 de Transporte de Glutamato
15.
Cell Rep ; 34(2): 108623, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440152

RESUMO

Vesicular glutamate transporters (VGLUTs) fill synaptic vesicles with glutamate. VGLUTs were originally identified as sodium-dependent transporters of inorganic phosphate (Pi), but the physiological relevance of this activity remains unclear. Heterologous expression of all three VGLUTs greatly augments intracellular Pi levels. Using neuronal models, we show that translocation of VGLUTs to the plasma membrane during exocytosis results in highly increased Pi uptake. VGLUT-mediated Pi influx is counteracted by Pi efflux. Synaptosomes prepared from perinatal VGLUT2-/- mice that are virtually free of VGLUTs show drastically reduced cytosolic Pi levels and fail to import Pi. Glutamate partially competes with sodium (Na+)/Pi (NaPi)-uptake mediated by VGLUTs but does not appear to be transported. A nanobody that blocks glutamate transport by binding to the cytoplasmic domain of VGLUT1 abolishes Pi transport when co-expressed with VGLUT1. We conclude that VGLUTs have a dual function that is essential for both vesicular glutamate loading and Pi restoration in neurons.


Assuntos
Transporte Biológico/fisiologia , Fosfatos/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Animais , Humanos , Ratos , Transfecção
16.
J Mol Biol ; 433(12): 166961, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33774037

RESUMO

Neurotransmission relies on the tight spatial and temporal regulation of the synaptic vesicle (SV) cycle. Nerve terminals contain hundreds of SVs that form tight clusters. These clusters represent a distinct liquid phase in which one component of the phase are SVs and the other synapsin 1, a highly abundant synaptic protein. Another major family of disordered proteins at the presynapse includes synucleins, most notably α-synuclein. The precise physiological role of α-synuclein in synaptic physiology remains elusive, albeit its role has been implicated in nearly all steps of the SV cycle. To determine the effect of α-synuclein on the synapsin phase, we employ the reconstitution approach using natively purified SVs from rat brains and the heterologous cell system to generate synapsin condensates. We demonstrate that synapsin condensates recruit α-synuclein, and while enriched into these synapsin condensates, α-synuclein still maintains its high mobility. The presence of SVs enhances the rate of synapsin/α-synuclein condensation, suggesting that SVs act as catalyzers for the formation of synapsin condensates. Notably, at physiological salt and protein concentrations, α-synuclein alone is not able to cluster isolated SVs. Excess of α-synuclein disrupts the kinetics of synapsin/SV condensate formation, indicating that the molar ratio between synapsin and α-synuclein is important in assembling the functional condensates of SVs. Understanding the molecular mechanism of α-synuclein interactions at the nerve terminals is crucial for clarifying the pathogenesis of synucleinopathies, where α-synuclein, synaptic proteins and lipid organelles all accumulate as insoluble intracellular inclusions.


Assuntos
Encéfalo/citologia , Sinapsinas/metabolismo , Vesículas Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Microscopia Confocal , Microscopia de Fluorescência , Ratos , Sinapsinas/química , Transmissão Sináptica , alfa-Sinucleína/química , Proteína Vermelha Fluorescente
17.
Nat Commun ; 12(1): 858, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558502

RESUMO

Synaptic vesicles are storage organelles for neurotransmitters. They pass through a trafficking cycle and fuse with the pre-synaptic membrane when an action potential arrives at the nerve terminal. While molecular components and biophysical parameters of synaptic vesicles have been determined, our knowledge on the protein interactions in their membranes is limited. Here, we apply cross-linking mass spectrometry to study interactions of synaptic vesicle proteins in an unbiased approach without the need for specific antibodies or detergent-solubilisation. Our large-scale analysis delivers a protein network of vesicle sub-populations and functional assemblies including an active and an inactive conformation of the vesicular ATPase complex as well as non-conventional arrangements of the luminal loops of SV2A, Synaptophysin and structurally related proteins. Based on this network, we specifically target Synaptobrevin-2, which connects with many proteins, in different approaches. Our results allow distinction of interactions caused by 'crowding' in the vesicle membrane from stable interaction modules.


Assuntos
Reagentes de Ligações Cruzadas/química , Espectrometria de Massas , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Encéfalo/metabolismo , Fusão de Membrana , Ligação Proteica , Mapas de Interação de Proteínas , Proteolipídeos , Proteoma/metabolismo , Ratos , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Sinaptofisina/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo
18.
Front Psychiatry ; 12: 701408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421682

RESUMO

Major depressive disorder (MDD) leads to pervasive changes in the health of afflicted patients. Despite advances in the understanding of MDD and its treatment, profound innovation is needed to develop fast-onset antidepressants with higher effectiveness. When acutely administered, the endogenous nucleoside guanosine (GUO) shows fast-onset antidepressant-like effects in several mouse models, including the olfactory bulbectomy (OBX) rodent model. OBX is advocated to possess translational value and be suitable to assess the time course of depressive-like behavior in rodents. This study aimed at investigating the long-term behavioral and neurochemical effects of GUO in a mouse model of depression induced by bilateral bulbectomy (OBX). Mice were submitted to OBX and, after 14 days of recovery, received daily (ip) administration of 7.5 mg/kg GUO or 40 mg/kg imipramine (IMI) for 45 days. GUO and IMI reversed the OBX-induced hyperlocomotion and recognition memory impairment, hippocampal BDNF increase, and redox imbalance (ROS, NO, and GSH levels). GUO also mitigated the OBX-induced hippocampal neuroinflammation (IL-1, IL-6, TNF-α, INF-γ, and IL-10). Brain microPET imaging ([18F]FDG) shows that GUO also prevented the OBX-induced increase in hippocampal FDG metabolism. These results provide additional evidence for GUO antidepressant-like effects, associated with beneficial neurochemical outcomes relevant to counteract depression.

19.
Neurochem Res ; 35(8): 1164-71, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20405205

RESUMO

Learned helplessness paradigm is a widely accepted animal model of depressive-like behavior based on stress. Glutamatergic system is closely involved with the stress-neurotoxicity in the brain and recently it is pointed to have a relevant role in the pathophysiology of depression disorder. Glutamate uptake is the main mechanism to terminate the glutamatergic physiological activity and to neuroprotection against excitotoxicity. We investigated the profile of glutamate uptake in female rats submitted to the learned helplessness paradigm and to different classes of stress related to the paradigm, in slices of brain cortex, striatum and hippocampus. Glutamate uptake in slices of hippocampus differ between learned helplessness (LH) and non-learned helplessness (NLH) animals immediately persisting up to 21 days after the paradigm. In addition, there were a decrease of glutamate uptake in the three brain structures analyzed at 21 days after the paradigm for LH animals. These results may contribute to better understand the role of the glutamatergic system on the depressive-like behavior.


Assuntos
Encéfalo/metabolismo , Depressão/metabolismo , Ácido Glutâmico/metabolismo , Desamparo Aprendido , Estresse Psicológico/metabolismo , Animais , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Depressão/psicologia , Feminino , Hipocampo/metabolismo , Ratos , Ratos Wistar , Estresse Psicológico/psicologia
20.
Sci Rep ; 10(1): 7540, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371955

RESUMO

Large dense-core vesicles (LDCVs) contain a variety of neurotransmitters, proteins, and hormones such as biogenic amines and peptides, together with microRNAs (miRNAs). Isolation of LDCVs is essential for functional studies including vesicle fusion, vesicle acidification, monoamine transport, and the miRNAs stored in LDCVs. Although several methods were reported for purifying LDCVs, the final fractions are significantly contaminated by other organelles, compromising biochemical characterization. Here we isolated LDCVs (chromaffin granules) with high yield and purity from bovine adrenal medulla. The fractionation protocol combines differential and continuous sucrose gradient centrifugation, allowing for reducing major contaminants such as mitochondria. Purified LDCVs show robust acidification by the endogenous V-ATPase and undergo SNARE-mediated fusion with artificial membranes. Interestingly, LDCVs contain specific miRNAs such as miR-375 and miR-375 is stabilized by protein complex against RNase A. This protocol can be useful in research on the biological functions of LDCVs.


Assuntos
Medula Suprarrenal/fisiologia , Técnicas Citológicas/métodos , Animais , Bovinos , Fracionamento Celular , Grânulos Cromafim/metabolismo , Fusão de Membrana , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa