Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 100, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879226

RESUMO

BACKGROUND: Apis cerana is widely distributed in China and, prior to the introduction of western honeybees, was the only bee species kept in China. During the long-term natural evolutionary process, many unique phenotypic variations have occurred among A. cerana populations in different geographical regions under varied climates. Understanding the molecular genetic basis and the effects of climate change on the adaptive evolution of A. cerana can promote A. cerana conservation in face of climate change and allow for the effective utilization of its genetic resources. RESULT: To investigate the genetic basis of phenotypic variations and the impact of climate change on adaptive evolution, A. cerana workers from 100 colonies located at similar geographical latitudes or longitudes were analyzed. Our results revealed an important relationship between climate types and the genetic variation of A. cerana in China, and a greater influence of latitude compared with longitude was observed. Upon selection and morphometry analyses combination for populations under different climate types, we identified a key gene RAPTOR, which was deeply involved in developmental processes and influenced the body size. CONCLUSION: The selection of RAPTOR at the genomic level during adaptive evolution could allow A. cerana to actively regulate its metabolism, thereby fine-tuning body sizes in response to harsh conditions caused by climate change, such as food shortages and extreme temperatures, which may partially elucidate the size differences of A. cerana populations. This study provides crucial support for the molecular genetic basis of the expansion and evolution of naturally distributed honeybee populations.


Assuntos
Aclimatação , Mudança Climática , Abelhas/genética , Animais , China , Tamanho Corporal , Genômica
2.
Pestic Biochem Physiol ; 179: 104975, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802525

RESUMO

Pesticides are one of the main causes of colony losses globally, posing a huge threat to the beekeeping industry. The fungicide carbendazim is commonly used on many crops worldwide, but the effects of fungicides on honey bees have received less attention than those of insecticides. Previous studies have shown that sublethal doses of carbendazim hinder growth and development and may destabilize and impede the development of honey bee colonies. The metabolome closely reflects brain activity at the functional level, allowing the effects of compounds such as fungicides to be investigated. Here, we established a model of carbendazim-treated honey bees, Apis mellifera, and used metabolomic approaches to better understand the effect of carbendazim on bee metabolic profiles. The results showed that 112 metabolites were significantly affected in carbendazim-treated bees compared to the control. Metabolites associated with energy and amino acid metabolism showed high abundance and were enriched for a wide range of pathways. In addition, the down-regulation of Aflatoxin B1exo-8,9-epoxide-GSH and glycerol diphosphate showed that carbenazim may affect the detoxification and immune system of honey bees. These results provide new insights into the interaction between fungicides and honey bees.


Assuntos
Inseticidas , Espectrometria de Massas em Tandem , Animais , Abelhas , Benzimidazóis , Carbamatos/toxicidade , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Inseticidas/toxicidade
3.
Insects ; 15(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38535371

RESUMO

The mandibular gland in worker bees synthesizes and secretes the organic acids present in royal jelly, and its development directly affects yield and quality. Therefore, we aimed to analyze the differences in morphology and gene expression in the mandibular glands of Apis mellifera carnica worker bees of different ages (3, 6, 9, 12, and 16 d). We dissected their mandibular glands and performed morphological and transcriptomic analyses to investigate the development of the mandibular gland and the molecular regulatory mechanisms involved in royal jelly secretion. Microscopy revealed that mandibular gland development is likely completed in the early stages. There were no significant differences in the structural morphology or organelles involved in the secretion of royal jelly at different ages. Transcriptomics revealed a total of 1554 differentially expressed genes, which were mainly involved in fat metabolism, lipid transport, and energy metabolism. The extracellular matrix-receptor interaction pathway was significantly enriched and contributed to the royal jelly secretion process. These results elucidate the genetic basis of the role of the mandibular gland in royal jelly secretion in A. mellifera and provide a reference for the genetic improvement of bees with high royal jelly production in the future.

4.
Sci Adv ; 9(18): eade7917, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37134176

RESUMO

Honey bees, Apis mellifera, have for millennia been managed and exploited by humans and introduced into most suitable regions worldwide. However, given the lack of records for many introduction events, treating A. mellifera populations as native would predictably bias genetic studies regarding origin and evolution. Here, we used the Dongbei bee, a well-documented population, introduced beyond the natural distribution range approximately 100 years ago, to elucidate the effects of local domestication on animal population genetic analyses. Strong domestication pressure was detected in this population, and the genetic divergence between Dongbei bee and its ancestral subspecies was found to have occurred at the lineage level. Results of phylogenetic and time divergence analyses could consequently be misinterpreted. Proposing new subspecies or lineages and performing analyses of origin should thus strive to eliminate anthropogenic effects. We highlight the need for definitions of landrace and breed in honey bee sciences and make preliminary suggestions.


Assuntos
Domesticação , Genética Populacional , Humanos , Abelhas/genética , Animais , Filogenia , Deriva Genética
5.
Chemosphere ; 266: 129011, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33246707

RESUMO

Studying the sublethal effects of agrochemical pesticides on nontarget honeybees (Apis mellifera) is important for agricultural development. Carbendazim is a widely used broad-spectrum fungicide that inhibits mitotic microtubule formation and cell division. However, the impact of carbendazim on bee health and development has not been fully elucidated. Here, using proteomics approaches, we assessed in vitro the changes in the expression of functional proteins in the head of newly emerged adults following treatment with field concentration of carbendazim during the larval stage. Treatment with carbendazim severely altered 266 protein expression patterns in the heads of adults and 218 of them showed downregulation after carbendazim exposure. Notably, major royal jelly proteins, a crucial multifunctional protein family with irreplaceable function in sustaining the development of colonies, were significantly suppressed in carbendazim-treated bees. This result was verified in both head and hypopharyngeal gland of nurse bees. Moreover, visual and olfactory loss, immune functions, muscular activity, social behavior, neural and brain development, protein synthesis and modification, and metabolism-related proteins were likely inhibited by carbendazim treatment. Together, these results suggest that carbendazim is an environmental risk factor that likely weakens bee colonies, partially due to reduced expression of major royal jelly proteins, which may be potential causes of colony collapse disorder.


Assuntos
Proteínas de Insetos , Proteômica , Animais , Abelhas , Benzimidazóis , Carbamatos , Ácidos Graxos , Proteínas de Insetos/genética , Larva
6.
J Wildl Dis ; 57(4): 932-935, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34516652

RESUMO

Honeybees are crucial pollinators with significant ecologic value. The decline of wild honeybee populations has been recognized and documented during recent decades. However, the health status of wild non-cave Apis spp., including giant and dwarf honeybees, remains generally unknown. We investigated eight common viruses and five bacterial or fungal pathogens in four wild non-cave honeybee species at 11 locations in Southwest China. As a result, Melissococcus plutonius, the pathogenic agent of European foulbrood, was detected in all the species, and the sequences were identical to the pathogen in managed cave honeybees. Only one virus, black queen cell virus (BQCV), was positive in one dwarf species, Apis florea, in our study. The positive BQCV infected three A. florea colonies in Guangxi Province, with distinct sequences from this virus reported in cave honeybees or in the same host in the nearby Yunnan Province. Although our results indicated a low pathogenic level of common diseases in the wild non-cave Apis spp. in Southwest China, the conservation of these wild pollinators is of importance in light of the noticeable decline in populations and the irreplaceable position of pollination.


Assuntos
Animais Selvagens , Vírus , Animais , Bactérias , Abelhas , China/epidemiologia
7.
Front Genet ; 11: 46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117456

RESUMO

DNA methylation is an epigenetic modification primarily responsible for individual phenotypic variation. This modification has been reported to play an important role in caste, brain plasticity, and body development in honeybees (Apis mellifera). Here, we report the DNA methylation profile of honeybee hypopharyngeal glands, from atrophy in winter to arousal in the following spring, through the use of whole-genome bisulfite sequencing. Consistent with previous studies in other Apis species, we found low methylation levels of the hypopharyngeal gland genome that were mostly of the CG type. Notably, we observed a strong preference for CpG methylation, which was localized in promoters and exon regions. This result further indicated that, in honeybees, DNA methylation may regulate gene expression by mediating alternative splicing, in addition to silencing gene in the promoter regions. After assessment by correlation analysis, we identified seven candidate proteins encoded by differentially methylated genes, including aristaless-related homeobox, forkhead box protein O, headcase, alpha-amylase, neural-cadherin, epidermal growth factor receptor, and aquaporin, which are reported to be involved in cell growth, proliferation, and differentiation. Hypomethylation followed by upregulated expression of these candidates suggested that DNA methylation may play significant roles in the activation of hypopharyngeal glands in overwintering honeybees. Overall, this study elucidates epigenetic modification differences in honeybee hypopharyngeal glands by comparing an inactive winter state to an aroused state in the following spring, which could provide further insight into the evolution of insect sociality and regulatory plasticity.

8.
Front Genet ; 9: 426, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349555

RESUMO

There are increasing concerns regarding the impact of agrochemical pesticides on non-target organisms. Pesticides could cause honeybee abnormal development in response to neurotoxins such as neonicotinoid. However, knowledge of carbendazim, a widespread fungicide in beekeeping practice, influencing on honeybee (Apis mellifera L.) brain development is lacking. Large-scale transcriptome approaches were applied to determine the changes in global gene expression in the brains of newly emerged honeybees after carbendazim exposure during the larval stage. To further understand the effects of carbendazim on the brain development of honeybees, the functions of differentially expressed genes were compared between the treatment and control groups. We found that neuroregulatory genes were down-regulated after carbendazim exposure, which suggest the neurotoxic effects of this fungicide on honeybee nervous system. Carbendazim exposure also altered the expression of genes implicated in metabolism, transport, sensor, and hormone. Notably, larvae in the carbendazim-treated group observed longer time to shift into the dormant pupal state than the control group. Moreover, a low juvenile hormone and high ecdysone titers were found in the treatment group compared to control group. The data is the first report of neurotoxic effects on honeybee caused by carbendazim, and the sublethal carbendazim may disturb honeybee development and is a potential chemical threating the honeybee colonies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa