Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; : e2404890, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148186

RESUMO

Enhancing the phase transition reversibility of electrode materials is an effective strategy to alleviate capacity degradation in the cycling of lithium-ion batteries (LIBs). However, a comprehensive understanding of phase transitions under microscopic electrode dynamics is still lacking. In this paper, the activation polarization is quantified as the potential difference between the applied potential (Uabs) and the zero-charge potential (ZCP) of electrode materials. The polarization potential difference facilitates the phase transition by driving Li-ion adsorption and supplying an electron-rich environment. A novel thermodynamic phase diagram is constructed to characterize the phase transition of the example MoS2 under various Li-ion concentrations and operating voltages using the grand canonic fixed-potential method (FPM). At thermodynamic quasi-equilibrium, the ZCP is close to the Uabs, and thus is used to form the discharge curve in the phase diagram. The voltage plateau is observed within the phase transition region in the simulation, which will disappear as the phase transition reversibility is impaired. The obtained discharge curve and phase transition concentration both closely match the experimental results. Overall, the study provides a theoretical understanding of how polarization affects phase evolution in electrode dynamics, which may provide a guideline to improve battery safety and cycle life.

2.
Small ; 20(31): e2400252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38461522

RESUMO

Owing to the high economic efficiency and energy density potential, manganese-based layer-structured oxides have attracted great interests as cathode materials for potassium ion batteries. In order to alleviate the continuous phase transition and K+ re-embedding from Jahn-Teller distortion, the [Mn-Co-Mo]O6 octahedra are introduced into P3-K0.45MnO2 herein to optimize the local electron structure. Based on the experimental and computational results, the octahedral center metal molybdenum in [MoO6] octahedra proposes a smaller ionic radius and higher oxidation state to induce second-order JTE (pseudo-JTE) distortion in the adjacent [MnO6] octahedra. This distortion compresses the [MnO6] octahedra along the c-axis, leading to an increased interlayer spacing in the K+ layer. Meanwhile, the Mn3+/Mn4+ is balanced by [CoO6] octahedra and the K+ diffusion pathway is optimized as well. The proposed P3-K0.45Mn0.9Co0.05Mo0.05O2 cathode material shows an enhanced cycling stability and rate performance. It demonstrates a high capacity of 80.2 mAh g-1 at 100 mAh g-1 and 77.3 mAh g-1 at 500 mAh g-1. Furthermore, it showcases a 2000 cycles stability with a 59.6% capacity retention. This work presents a promising solution to the challenges faced by manganese-based layered oxide cathodes and offers a deep mechanism understanding and improved electrochemical performance.

3.
Nano Lett ; 22(17): 6988-6996, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36005477

RESUMO

We report Ca2-xIrO4 nanocrystals exhibit record stability of 300 h continuous operation and high iridium mass activity (248 A gIr-1 at 1.5 VRHE) that is about 62 times that of benchmark IrO2. Lattice-resolution images and surface-sensitive spectroscopies demonstrate the Ir-rich surface layer (evolved from one-dimensional connected edge-sharing [IrO6] octahedrons) with high relative content of Ir5+ sites, which is responsible for the high activity and long-term stability. Combining operando infrared spectroscopy with X-ray absorption spectroscopy, we report the first direct observation of key intermediates absorbing at 946 cm-1 (Ir6+═O site) and absorbing at 870 cm-1 (Ir6+OO- site) on iridium-based oxides electrocatalysts, and further discover the Ir6+═O and Ir6+OO- intermediates are stable even just from 1.3 VRHE. Density functional theory calculations indicate the catalytic activity of Ca2IrO4 is enhanced remarkably after surface Ca leaching, and suggest IrOO- and Ir═O intermediates can be stabilized on positive charged active sites of Ir-rich surface layer.

4.
Small ; 17(40): e2103501, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405527

RESUMO

Oxygen evolution reaction (OER) is an obstacle to the electrocatalytic water splitting due to its unique four-proton-and-electron-transfer reaction process. Many methods, such as engineering heterostructure and introducing oxygen vacancy, have been used to improve the catalytic performance of electrocatalysts for OER. Herein, the above two kinds of regulation are simultaneously realized in a catalyst by using unique ion irradiation technology. A nanosheet structured NiO/NiFe2 O4 heterostructure with rich oxygen vacancies converted from nickel-iron layered double hydroxides by Ar+ ions irradiation shows significant enhancement in both OER and hydrogen evolution reaction performance. Density functional theory (DFT) calculations reveal that the construction of NiO/NiFe2 O4 can optimize the free energy of O* to OOH* process during OER reaction. The oxygen vacancy-rich NiO/NiFe2 O4 nanosheets have an overpotential of 279 mV at 10 mA cm-2 and a low Tafel slope of 42 mV dec-1 . Moreover, this NiO/NiFe2 O4 electrode shows an excellent long-term stability at 100 mA cm-2 for 450 h. The synergetic effects between NiO and NiFe2 O4 make NiO/NiFe2 O4 heterostructure have high conductivity and fast charge transfer, abundant active sites, and high catalytic reactivity, contributing to its excellent performance.

5.
Proc Natl Acad Sci U S A ; 115(36): 8889-8894, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127004

RESUMO

Semiconductor p-n junctions are fundamental building blocks for modern optical and electronic devices. The p- and n-type regions are typically created by chemical doping process. Here we show that in the new class of halide perovskite semiconductors, the p-n junctions can be readily induced through a localized thermal-driven phase transition. We demonstrate this p-n junction formation in a single-crystalline halide perovskite CsSnI3 nanowire (NW). This material undergoes a phase transition from a double-chain yellow (Y) phase to an orthorhombic black (B) phase. The formation energies of the cation and anion vacancies in these two phases are significantly different, which leads to n- and p- type electrical characteristics for Y and B phases, respectively. Interface formation between these two phases and directional interface propagation within a single NW are directly observed under cathodoluminescence (CL) microscopy. Current rectification is demonstrated for the p-n junction formed with this localized thermal-driven phase transition.

6.
J Phys Chem A ; 124(26): 5444-5455, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32520545

RESUMO

In the literature of heterogeneous water-splitting catalytic thermodynamic study, the computational hydrogen electrode (CHE) scheme is used in the majority of the cases. In this scheme, either the bare surface without O and OH decoration or a decorated phase chosen from a surface Pourbaix diagram is employed as a starting point in a four-electron reaction loop (FERL) to describe the oxygen evolution reaction (OER) process. The electrode potential that makes every step of this FERL exothermic is defined as the thermodynamic overpotential (ηtdOER) of the OER reaction and is often compared with the experimental overpotential. In this study, we point out that for complex systems where each reaction site can bind multiple species, this widely used scheme could lead to wrong ηtdOER. To yield the correct reaction path and ηtdOER, one needs to extend the CHE scheme to a full Gibbs free energy landscape scheme, where all of the intermediate states and their possible transitions are laid out and considered. The correct criterion for ηtdOER should not be "there is no trapped intermediate state (TIS) for any single FERL", rather "there is no TIS for the whole reaction landscape". Using transition metal-doped graphene-nitrogen (TMN4Gra) (TM = Fe and Co) as examples, we show that these two approaches yield different results.

7.
Nano Lett ; 19(1): 591-597, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30582699

RESUMO

An understanding of nanocrystal shape evolution is significant for the design, synthesis, and applications of nanocrystals with surface-enhanced properties such as catalysis or plasmonics. Surface adsorbates that are selectively attached to certain facets may strongly affect the atomic pathways of nanocrystal shape development. However, it is a great challenge to directly observe such dynamic processes in situ with a high spatial resolution. Here, we report the anomalous shape evolution of Ag2O2 nanocrystals modulated by the surface adsorbates of Ag clusters during electron beam etching, which is revealed through in situ transmission electron microscopy (TEM). In contrast to the Ag2O2 nanocrystals without adsorbates, which display the near-equilibrium shape throughout the etching process, Ag2O2 nanocrystals with Ag surface adsorbates show distinct facet development during etching by electron beam irradiation. Three stages of shape changes are observed: a sphere-to-a cube transformation, side etching of a cuboid, and bottom etching underneath the surface adsorbates. We find that the Ag adsorbates modify the Ag2O2 nanocrystal surface configuration by selectively capping the junction between two neighboring facets. They prevent the edge atoms from being etched away and block the diffusion path of surface atoms. Our findings provide critical insights into the modulatory function of surface adsorbates on the shape control of nanocrystals.

8.
Phys Chem Chem Phys ; 21(6): 3024-3032, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672565

RESUMO

Highly active single-atom catalysts (SACs) have recently been intensively studied for their potential in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Due to the existence of many such SAC systems, a general understanding of the trend and designing principle is necessary to discover an optimal SAC system. In this work, by using density functional theory (DFT), we investigated a series of late single transition metals (TM = Fe, Co, Ni, Cu, and Pd) anchored on various N doped graphenes (xN-TM, x = 1-4) as electrocatalysts for both the HER and OER. Solvent effects were taken into account using an implicit continuum model. Our results reveal that the catalytic activity of SACs is determined by the local coordination number of N and TM in the catalysts. Among the considered catalysts, a low-coordinated Co site, i.e. a triple-coordinated Co, exhibits a high catalytic activity toward the HER with a calculated hydrogen adsorption free energy of -0.01 eV, whereas a high-coordinated Co center, i.e. a quadruple-coordinated Co is a promising candidate for the OER with a low computed overpotential of -0.39 V, which are comparable to those of noble metal catalysts, indicating superior HER and OER performance of N-Co co-doped graphenes. The results shed light on the potential applications of TM and N co-doped graphenes as efficient single-atom bifunctional catalysts for water splitting, thereby functioning as promising candidates for hydrogen/oxygen production.

9.
Environ Sci Technol ; 51(7): 3809-3815, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28245125

RESUMO

The presence of organophosphate ester (OPE) flame retardants and plasticizers in surface sediment from the North Pacific to Arctic Ocean was observed for the first time during the fourth National Arctic Research Expedition of China in the summer of 2010. The samples were analyzed for three halogenated OPEs [tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(dichloroisopropyl) phosphate], three alkylated OPEs [triisobutyl phosphate (TiBP), tri-n-butyl phosphate, and tripentyl phosphate], and triphenyl phosphate. Σ7OPEs (total concentration of the observed OPEs) was in the range of 159-4658 pg/g of dry weight. Halogenated OPEs were generally more abundant than the nonhalogenated OPEs; TCEP and TiBP dominated the overall concentrations. Except for that of the Bering Sea, Σ7OPEs values increased with increasing latitudes from Bering Strait to the Central Arctic Ocean, while the contributions of halogenated OPEs (typically TCEP and TCPP) to the total OPE profile also increased from the Bering Strait to the Central Arctic Ocean, indicating they are more likely to be transported to the remote Arctic. The median budget of 52 (range of 17-292) tons for Σ7OPEs in sediment from the Central Arctic Ocean represents only a very small amount of their total production volume, yet the amount of OPEs in Arctic Ocean sediment was significantly larger than the sum of polybrominated diphenyl ethers (PBDEs) in the sediment, indicating they are equally prone to long-range transport away from source regions. Given the increasing level of production and usage of OPEs as substitutes of PBDEs, OPEs will continue to accumulate in the remote Arctic.


Assuntos
Retardadores de Chama , Plastificantes , Monitoramento Ambiental , Oceanos e Mares , Organofosfatos
10.
Nano Lett ; 16(5): 3022-8, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27050491

RESUMO

Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [ Nature 2009 , 457 , 863 ]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs with the P6/mmm space group and six atoms in the unit cell and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac Fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 × 10(6) m/s, which is even higher than that of graphene (0.82 × 10(6) m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.

11.
J Am Chem Soc ; 138(19): 6292-7, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27116595

RESUMO

Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e., Pd/g-C3N4 and Pt/g-C3N4, respectively, acting as photocatalysts for CO2 reduction were investigated by density functional theory calculations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from the hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, deposition of atom catalysts on g-C3N4 significantly enhances the visible-light absorption, rendering them ideal for visible-light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

12.
Phys Chem Chem Phys ; 17(46): 31140-4, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26538201

RESUMO

Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970-974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C3N4 and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C3N4 can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C3N4 enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C3N4 calculated by the hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C3N4 for water splitting. Our results offer new theoretical insights into this metal-free photocatalyst for water splitting.

13.
STAR Protoc ; 5(2): 103021, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38635396

RESUMO

The grand canonical constant potential approach is a cornerstone for modeling the electrochemical reactions under work conditions. Here, we present a protocol for evaluating the effect of potential on electrochemical reactions using the grand canonical fixed-potential technique. We describe steps for installing PWmat software, preparing input files for the fixed-potential calculation, and simulating different electrochemical states under the same potential. We then detail procedures for analyzing the free energy evolution under the same potential. For complete details on the use and execution of this protocol, please refer to Gao et al.1,2,3.


Assuntos
Técnicas Eletroquímicas , Software , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Termodinâmica , Modelos Químicos , Eletroquímica/métodos
14.
Chem Sci ; 15(9): 3330-3338, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425530

RESUMO

The reduction of CO2 into value-added chemicals and fuels has been actively studied as a promising strategy for mitigating carbon dioxide emissions. However, the dilemma for the experimentalist in choosing an appropriate reaction medium and neglecting the effect of solvent ions when using a simple thermochemical model, normally leads to the disagreement between experimental observations and theoretical calculations. In this work, by considering the effects of both the anion and cation, a more realistic CO2 reduction environment at the solid-liquid interface between copper and solvent ions has been systematically studied by using ab initio molecular dynamics and density functional theory. We revealed that the co-occurrence of alkali ions (K+) and halide ions (F-, Cl-, Br-, and I-) in the electric double layer (EDL) can enhance the adsorption of CO2 by more than 0.45 eV compared to that in pure water, and the calculated energy barrier for CO-CO coupling also decreases 0.32 eV in the presence of I ion on a negatively charged copper electrode. The hydrated ions can modulate the distribution of the charge near the solid-liquid interface, which significantly promotes CO2 reduction and meanwhile impedes the hydrogen evolution reaction. Therefore, our work unveils the significant role of halide ions at the electrode-electrolyte interface for promoting CO2 reduction on copper electrode.

15.
Phys Chem Chem Phys ; 15(31): 12846-51, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23807655

RESUMO

Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1-3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S-O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S-O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.


Assuntos
Monóxido de Carbono/química , Ouro/química , Platina/química , Dióxido de Enxofre/química , Adsorção , Catálise , Oxirredução , Propriedades de Superfície
16.
iScience ; 26(11): 108318, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026153

RESUMO

The proton migration in the electrochemical interface is a fundamental electrochemical processes in proton involved reactions. We find fractional electron transfer, which is inversely proportional to the distance between the proton and electrode, during the proton migration under constant potential. The electrical energy carried by the transferred charge facilitates the proton to overcome the chemical barrier in the migration pathway, which is accounting for more than half electrical energy in the proton involved reactions. Consequently, less charge transfer and energy exchange take place in the reduction process. Therefore, the proton migration in the electrochemical interface is an essential component of the electrochemical reaction in terms of electron transfer and energy conversation, and are worthy of more attention in the rational design and optimization of electrochemical systems.

17.
Sci Total Environ ; 902: 166457, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37607637

RESUMO

Deep-lake (reservoir) ecosystems provide valuable ecosystem services (ES) and generate significant ecosystem service values (ESV); however, reservoir ecosystems have suffered great losses from environmental changes and human activities. Currently, studies on ES and its correlations with stressors remain insufficient and the integration of ES into ecological restoration and management poses numerous challenges. Here, we combined four types of stressors with six ES closely related to human well-being to discuss their interactions in Qiandao Lake (a representative deep lake in China). Our results indicate that all ESV showed a consistent growth trend throughout the study period, reaching 5203.8 million CNY in 2018, and the cultural service value surpassed the provisioning service value for the first time in 2004. Almost all the ESV were limited during the cyanobacterial bloom in Qiandao Lake. Redundancy analysis and partial least squares structural equation modeling jointly revealed that socioeconomic development was the most important direct driver of the increase in ESV (0.770) and that hydro-meteorological conditions (0.316) and pollutant loads (0.274) positively affected ESV by mediating lake trophic status. The trophic status of the lake is the result of the interaction of multiple stressors, which has a negative impact on ESV. Therefore, to continuously protect the provisioning and cultural service values of deep-lake ecosystems from damage, the government must rationally formulate SED goals and reduce pollutant loads during lake development, operation, and utilization. This work provides valuable insights into the interactions between ES, which are closely related to human well-being, and stressors in deep-lake ecosystems.


Assuntos
Ecossistema , Poluentes Ambientais , Humanos , Lagos , China , Atividades Humanas , Conservação dos Recursos Naturais
18.
Science ; 380(6645): 609-616, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167381

RESUMO

Discovery of earth-abundant electrocatalysts to replace iridium for the oxygen evolution reaction (OER) in a proton exchange membrane water electrolyzer (PEMWE) represents a critical step in reducing the cost for green hydrogen production. We report a nanofibrous cobalt spinel catalyst codoped with lanthanum (La) and manganese (Mn) prepared from a zeolitic imidazolate framework embedded in electrospun polymer fiber. The catalyst demonstrated a low overpotential of 353 millivolts at 10 milliamperes per square centimeter and a low degradation for OER over 360 hours in acidic electrolyte. A PEMWE containing this catalyst at the anode demonstrated a current density of 2000 milliamperes per square centimeter at 2.47 volts (Nafion 115 membrane) or 4000 milliamperes per square centimeter at 3.00 volts (Nafion 212 membrane) and low degradation in an accelerated stress test.

19.
Environ Pollut ; 300: 118930, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124121

RESUMO

The coastal megacity Shanghai is located in the center of the Yangtze River Delta, a dominant flame retardants (FRs) production region in China, especially for organophosphate esters (OPEs). This prompted us to investigate occurrence and seasonal changes of atmospheric OPEs in Shanghai, as well as to evaluate their sources, environmental behavior and fate as a case study for global coastal regions. Atmospheric gas and particle phase OPEs were weekly collected at two coastal sites - the emerging town Lingang New Area (LGNA), and the chemical-industry zone Jinshan Area (JSA) from July 2016-June 2017. Total atmospheric concentrations of the observed OPEs were significantly higher in JSA (median of 1800 pg m-3) than LGNA (median of 580 pg m-3). Tris(1-chloro-2-propyl) phosphate (TCPP) was the most abundant compound, and the proportion of three chlorinated OPEs were higher in the particle phase (55%) than in the gas phase (39%). The year-round median contribution of particle phase OPEs was 33%, which changed strongly with seasons, accounting for 10% in summer in contrast to 62% in winter. Gas and particle phase OPEs in JSA exhibited significant correlations with inverse of temperature, respectively, indicating the importance of local/secondary volatilization sources. The estimated fluxes of gaseous absorption were almost 2 orders of magnitude higher than those of particle phase deposition, which could act as sources of organic phosphorus to coastal and open ocean waters.


Assuntos
Monitoramento Ambiental , Retardadores de Chama , China , Ésteres , Retardadores de Chama/análise , Organofosfatos , Estações do Ano
20.
J Chem Theory Comput ; 18(11): 6878-6891, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36253911

RESUMO

Free energy calculation of small molecules or ion species in aqueous solvent is one of the most important problems in electrochemistry study. Although there are many previous approaches to calculate such free energies, they are based on ab initio methods and suffer from various limitations and approximations. In the current work, we developed a hybrid approach based on ab initio molecular dynamics (AIMD) simulations to calculate the ion solvation energy. In this approach, a small water cluster surrounding the central ion is used, and implicit solvent model is applied outside the water cluster. A dynamic potential well is used during AIMD to keep the water cluster together. Quasi-harmonic approximation is used to calculate the entropy contribution, while the total energy average is used to calculate the enthalpy term. The obtained solvation voltages of the bulk metal agree with experiments within 0.3 eV, and the simulation results for the solvation energies of gaseous ions are close to the experimental observations. Besides the free energies, radial pair distribution functions and coordination numbers of hydrated cations are also obtained. The remaining challenges of this method are also discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa