RESUMO
Lactylation is a lactate-induced post-translational modification best known for its roles in epigenetic regulation. Herein, we demonstrate that MRE11, a crucial homologous recombination (HR) protein, is lactylated at K673 by the CBP acetyltransferase in response to DNA damage and dependent on ATM phosphorylation of the latter. MRE11 lactylation promotes its binding to DNA, facilitating DNA end resection and HR. Inhibition of CBP or LDH downregulated MRE11 lactylation, impaired HR, and enhanced chemosensitivity of tumor cells in patient-derived xenograft and organoid models. A cell-penetrating peptide that specifically blocks MRE11 lactylation inhibited HR and sensitized cancer cells to cisplatin and PARPi. These findings unveil lactylation as a key regulator of HR, providing fresh insights into the ways in which cellular metabolism is linked to DSB repair. They also imply that the Warburg effect can confer chemoresistance through enhancing HR and suggest a potential therapeutic strategy of targeting MRE11 lactylation to mitigate the effects.
Assuntos
Proteínas de Ligação a DNA , Proteína Homóloga a MRE11 , Reparo de DNA por Recombinação , Humanos , DNA , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Recombinação Homóloga , Proteína Homóloga a MRE11/metabolismo , Ácido Láctico/metabolismoRESUMO
Replication protein A (RPA) is a major regulator of eukaryotic DNA metabolism involved in multiple essential cellular processes. Maintaining appropriate RPA dynamics is crucial for cells to prevent RPA exhaustion, which can lead to replication fork breakage and replication catastrophe. However, how cells regulate RPA availability during unperturbed replication and in response to stress has not been well elucidated. Here, we show that HNRNPA2B1SUMO functions as an endogenous inhibitor of RPA during normal replication. HNRNPA2B1SUMO associates with RPA through recognizing the SUMO-interacting motif (SIM) of RPA to inhibit RPA accumulation at replication forks and impede local ATR activation. Declining HNRNPA2SUMO induced by DNA damage will release nuclear soluble RPA to localize to chromatin and enable ATR activation. Furthermore, we characterize that HNRNPA2B1 hinders homologous recombination (HR) repair via limiting RPA availability, thus conferring sensitivity to PARP inhibitors. These findings establish HNRNPA2B1 as a critical player in RPA-dependent surveillance networks.
Assuntos
Replicação do DNA , Proteína de Replicação A , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Replicação do DNA/genética , Sumoilação , Dano ao DNA , Cromatina/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismoRESUMO
Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.
Assuntos
Cromatina , Reparo do DNA , Animais , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Mamíferos/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteínas de Ciclo Celular/metabolismoRESUMO
BACKGROUND: Dilated cardiomyopathy (DCM) is a major cause of heart failure and carries a high mortality rate. Myocardial recovery in DCM-related heart failure patients is highly variable, with some patients having little or no response to standard drug therapy. A genome-wide association study may agnostically identify biomarkers and provide novel insight into the biology of myocardial recovery in DCM. METHODS: A genome-wide association study for change in left ventricular ejection fraction was performed in 686 White subjects with recent-onset DCM who received standard pharmacotherapy. Genome-wide association study signals were subsequently functionally validated and studied in relevant cellular models to understand molecular mechanisms that may have contributed to the change in left ventricular ejection fraction. RESULTS: The genome-wide association study identified a highly suggestive locus that mapped to the 5'-flanking region of the CDCP1 (CUB [complement C1r/C1s, Uegf, and Bmp1] domain containing protein 1) gene (rs6773435; P=7.12×10-7). The variant allele was associated with improved cardiac function and decreased CDCP1 transcription. CDCP1 expression was significantly upregulated in human cardiac fibroblasts (HCFs) in response to the PDGF (platelet-derived growth factor) signaling, and knockdown of CDCP1 significantly repressed HCF proliferation and decreased AKT (protein kinase B) phosphorylation. Transcriptomic profiling after CDCP1 knockdown in HCFs supported the conclusion that CDCP1 regulates HCF proliferation and mitosis. In addition, CDCP1 knockdown in HCFs resulted in significantly decreased expression of soluble ST2 (suppression of tumorigenicity-2), a prognostic biomarker for heart failure and inductor of cardiac fibrosis. CONCLUSIONS: CDCP1 may play an important role in myocardial recovery in recent-onset DCM and mediates its effect primarily by attenuating cardiac fibrosis.
Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Cardiomiopatia Dilatada/metabolismo , Volume Sistólico , Estudo de Associação Genômica Ampla , Função Ventricular Esquerda , Fibrose , Antígenos de Neoplasias/uso terapêutico , Moléculas de Adesão Celular/metabolismoRESUMO
BACKGROUND: Endocrine therapy is the most important treatment modality of breast cancer patients whose tumors express the estrogen receptor α (ERα). The androgen receptor (AR) is also expressed in the vast majority (80-90%) of ERα-positive tumors. AR-targeting drugs are not used in clinical practice, but have been evaluated in multiple trials and preclinical studies. METHODS: We performed a genome-wide study to identify hormone/drug-induced single nucleotide polymorphism (SNP) genotype - dependent gene-expression, known as PGx-eQTL, mediated by either an AR agonist (dihydrotestosterone) or a partial antagonist (enzalutamide), utilizing a previously well characterized lymphoblastic cell line panel. The association of the identified SNPs-gene pairs with breast cancer phenotypes were then examined using three genome-wide association (GWAS) studies that we have published and other studies from the GWAS catalog. RESULTS: We identified 13 DHT-mediated PGx-eQTL loci and 23 Enz-mediated PGx-eQTL loci that were associated with breast cancer outcomes post ER antagonist or aromatase inhibitors (AI) treatment, or with pharmacodynamic (PD) effects of AIs. An additional 30 loci were found to be associated with cancer risk and sex-hormone binding globulin levels. The top loci involved the genes IDH2 and TMEM9, the expression of which were suppressed by DHT in a PGx-eQTL SNP genotype-dependent manner. Both of these genes were overexpressed in breast cancer and were associated with a poorer prognosis. Therefore, suppression of these genes by AR agonists may benefit patients with minor allele genotypes for these SNPs. CONCLUSIONS: We identified AR-related PGx-eQTL SNP-gene pairs that were associated with risks, outcomes and PD effects of endocrine therapy that may provide potential biomarkers for individualized treatment of breast cancer.
Assuntos
Neoplasias da Mama , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Receptores Androgênicos , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Di-Hidrotestosterona/farmacologia , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Nitrilas/uso terapêutico , Genótipo , Farmacogenética/métodos , Variantes Farmacogenômicos , Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos Hormonais/farmacologia , BenzamidasRESUMO
Understanding the function of non-coding genomic sequence variants represents a challenge for biomedicine. Many diseases are products of gene-by-environment interactions with complex mechanisms. This study addresses these themes by mechanistic characterization of non-coding variants that influence gene expression only after drug or hormone exposure. Using glucocorticoid signaling as a model system, we integrated genomic, transcriptomic, and epigenomic approaches to unravel mechanisms by which variant function could be revealed by hormones or drugs. Specifically, we identified cis-regulatory elements and 3D interactions underlying ligand-dependent associations between variants and gene expression. One-quarter of the glucocorticoid-modulated variants that we identified had already been associated with clinical phenotypes. However, their affected genes were 'unmasked' only after glucocorticoid exposure and often with function relevant to the disease phenotypes. These diseases involved glucocorticoids as risk factors or therapeutic agents and included autoimmunity, metabolic and mood disorders, osteoporosis and cancer. For example, we identified a novel breast cancer risk gene, MAST4, with expression that was repressed by glucocorticoids in cells carrying the risk genotype, repression that correlated with MAST4 expression in breast cancer and treatment outcomes. These observations provide a mechanistic framework for understanding non-coding genetic variant-chemical environment interactions and their role in disease risk and drug response.
Assuntos
Glucocorticoides , Sequências Reguladoras de Ácido Nucleico , Glucocorticoides/genética , Glucocorticoides/metabolismo , Fatores de Risco , Humanos , Farmacogenética , Locos de Características QuantitativasRESUMO
Cytochrome P450s (CYPs) display significant inter-individual variation in expression, much of which remains unexplained by known CYP single-nucleotide polymorphisms (SNPs). Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators for several drug-metabolizing CYPs including CYP3A4 However, transcription factors (TFs) that might influence CYP expression through an effect on TSPYL expression are unknown. Therefore, we studied regulators of TSPYL expression in hepatic cell lines and their possible SNP-dependent variation. Specifically, we identified candidate TFs that might influence TSPYL expression using the ENCODE ChIPseq database. Subsequently, the expression of TSPYL1/2/4 as well as that of selected CYP targets for TSPYL regulation were assayed in hepatic cell lines before and after knockdown of TFs that might influence CYP expression through TSPYL-dependent mechanisms. Those results were confirmed by studies of TF binding to TSPYL1/2/4 gene promoter regions. In hepatic cell lines, knockdown of the REST and ZBTB7A TFs resulted in decreased TSPYL1 and TSPYL4 expression and increased CYP3A4 expression, changes reversed by TSPYL1/4 overexpression. Potential binding sites for REST and ZBTB7A on the promoters of TSPYL1 and TSPYL4 were confirmed by chromatin immunoprecipitation. Finally, common SNP variants in upstream binding sites on the TSPYL1/4 promoters were identified and luciferase reporter constructs confirmed SNP-dependent modulation of TSPYL1/4 gene transcription. In summary, we identified REST and ZBTB7A as regulators of the expression of TSPYL genes which themselves can contribute to regulation of CYP expression and-potentially-of drug metabolism. SNP-dependent modulation of TSPYL transcription may contribute to individual variation in both CYP expression and-downstream-drug response phenotypes. SIGNIFICANCE STATEMENT: Testis-specific Y-encoded-like proteins (TSPYLs) are transcriptional regulators of cytochrome P450 (CYP) gene expression. Here, we report that variation in TSPYL expression as a result of the effects of genetically regulated TSPYL transcription factors is an additional factor that could result in downstream variation in CYP expression and potentially, as a result, variation in drug biotransformation.
Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Masculino , Animais , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Citocromo P-450 CYP3A/genética , Testículo , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genéticaRESUMO
Bipolar disorder (BD) and obesity are highly comorbid. We previously performed a genome-wide association study (GWAS) for BD risk accounting for the effect of body mass index (BMI), which identified a genome-wide significant single-nucleotide polymorphism (SNP) in the gene encoding the transcription factor 7 like 2 (TCF7L2). However, the molecular function of TCF7L2 in the central nervous system (CNS) and its possible role in the BD and BMI interaction remained unclear. In the present study, we demonstrated by studying human induced pluripotent stem cell (hiPSC)-derived astrocytes, cells that highly express TCF7L2 in the CNS, that the BD-BMI GWAS risk SNP is associated with glucocorticoid-dependent repression of the expression of a previously uncharacterized TCF7L2 transcript variant. That transcript is a long non-coding RNA (lncRNA-TCF7L2) that is highly expressed in the CNS but not in peripheral tissues such as the liver and pancreas that are involved in metabolism. In astrocytes, knockdown of the lncRNA-TCF7L2 resulted in decreased expression of the parent gene, TCF7L2, as well as alterations in the expression of a series of genes involved in insulin signaling and diabetes. We also studied the function of TCF7L2 in hiPSC-derived astrocytes by integrating RNA sequencing data after TCF7L2 knockdown with TCF7L2 chromatin-immunoprecipitation sequencing (ChIP-seq) data. Those studies showed that TCF7L2 directly regulated a series of BD risk genes. In summary, these results support the existence of a CNS-based mechanism underlying BD-BMI genetic risk, a mechanism based on a glucocorticoid-dependent expression quantitative trait locus that regulates the expression of a novel TCF7L2 non-coding transcript.
Assuntos
Transtorno Bipolar , Diabetes Mellitus Tipo 2 , Células-Tronco Pluripotentes Induzidas , RNA Longo não Codificante , Transtorno Bipolar/genética , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/metabolismo , Estudo de Associação Genômica Ampla , Glucocorticoides , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismoRESUMO
Selective serotonin reuptake inhibitors (SSRIs) are standard of care for major depressive disorder (MDD) pharmacotherapy, but only approximately half of these patients remit on SSRI therapy. Our previous genome-wide association study identified a single-nucleotide polymorphism (SNP) signal across the glutamate-rich 3 (ERICH3) gene that was nearly genome-wide significantly associated with plasma serotonin (5-HT) concentrations, which were themselves associated with SSRI response for MDD patients enrolled in the Mayo Clinic PGRN-AMPS SSRI trial. In this study, we performed a meta-analysis which demonstrated that those SNPs were significantly associated with SSRI treatment outcomes in four independent MDD trials. However, the function of ERICH3 and molecular mechanism(s) by which it might be associated with plasma 5-HT concentrations and SSRI clinical response remained unclear. Therefore, we characterized the human ERICH3 gene functionally and identified ERICH3 mRNA transcripts and protein isoforms that are highly expressed in central nervous system cells. Coimmunoprecipitation identified a series of ERICH3 interacting proteins including clathrin heavy chain which are known to play a role in vesicular function. Immunofluorescence showed ERICH3 colocalization with 5-HT in vesicle-like structures, and ERICH3 knock-out dramatically decreased 5-HT staining in SK-N-SH cells as well as 5-HT concentrations in the culture media and cell lysates without changing the expression of 5-HT synthesizing or metabolizing enzymes. Finally, immunofluorescence also showed ERICH3 colocalization with dopamine in human iPSC-derived neurons. These results suggest that ERICH3 may play a significant role in vesicular function in serotonergic and other neuronal cell types, which might help explain its association with antidepressant treatment response.
Assuntos
Transtorno Depressivo Maior , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Estudo de Associação Genômica Ampla , Humanos , Serotonina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêuticoRESUMO
OBJECTIVES: We previously discovered that the single nucleotide polymorphisms (SNP) rs9940645 in the ZNF423 gene regulate ZNF423 expression and serve as a potential biomarker for response to selective estrogen receptor modulators (SERMs). Here we explored pathways involved in ZNF423-mediated SERMs response and drugs that potentially sensitize SERMs. METHODS: RNA sequencing and label-free quantitative proteomics were performed to identify genes and pathways that are regulated by ZNF423 and the ZNF423 SNP. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to metformin. RESULTS: We identified ribosome and AMP-activated protein kinase (AMPK) signaling as potential pathways regulated by ZNF423 or ZNF423 rs9940645 SNP. Moreover, using clustered regularly interspaced short palindromic repeats/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to metformin, either alone or in the combination of tamoxifen, were observed in both cell culture and the mouse xenograft model. CONCLUSIONS: We found that AMPK signaling is modulated by the ZNF423 rs9940645 SNP in estrogen and SERM-dependent fashion. The ZNF423 rs9940645 SNP affects metformin response in breast cancer and could be a potential biomarker for tailoring the metformin treatment.
Assuntos
Neoplasias da Mama , Metformina , Proteínas Quinases Ativadas por AMP/genética , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Estrogênios , Feminino , Humanos , Metformina/farmacologia , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Moduladores Seletivos de Receptor Estrogênico , TamoxifenoRESUMO
Dihydroxyacid dehydratase (DHAD) is the third enzyme required for branched-chain amino acid biosynthesis in bacteria, fungi, and plants. DHAD enzymes contain two distinct types of active-site Fe-S clusters. The best characterized examples are Escherichia coli DHAD, which contains an oxygen-labile [Fe4S4] cluster, and spinach DHAD, which contains an oxygen-resistant [Fe2S2] cluster. Although the Fe-S cluster is crucial for DHAD function, little is known about the cluster-coordination environment or the mechanism of catalysis and cluster biogenesis. Here, using the combination of UV-visible absorption and circular dichroism and resonance Raman and electron paramagnetic resonance, we spectroscopically characterized the Fe-S center in DHAD from Arabidopsis thaliana (At). Our results indicated that AtDHAD can accommodate [Fe2S2] and [Fe4S4] clusters. However, only the [Fe2S2] cluster-bound form is catalytically active. We found that the [Fe2S2] cluster is coordinated by at least one non-cysteinyl ligand, which can be replaced by the thiol group(s) of dithiothreitol. In vitro cluster transfer and reconstitution reactions revealed that [Fe2S2] cluster-containing NFU2 protein is likely the physiological cluster donor for in vivo maturation of AtDHAD. In summary, AtDHAD binds either one [Fe4S4] or one [Fe2S2] cluster, with only the latter being catalytically competent and capable of substrate and product binding, and NFU2 appears to be the physiological [Fe2S2] cluster donor for DHAD maturation. This work represents the first in vitro characterization of recombinant AtDHAD, providing new insights into the properties, biogenesis, and catalytic role of the active-site Fe-S center in a plant DHAD.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Hidroliases/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/química , Enxofre/química , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Catálise , Dicroísmo Circular , Hidroliases/química , Hidroliases/genética , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Homologia de Sequência , Análise Espectral Raman , Enxofre/metabolismoRESUMO
Covalent lipid modification of proteins is essential to their cellular localizations and functions. Engineered lipid motifs, coupled with bio-orthogonal chemistry, have been utilized to identify myristoylated or palmitoylated proteins in cells. However, whether modified proteins have similar properties as endogenous ones has not been well investigated mainly due to lack of methods to generate and analyze purified proteins. We have developed a method that utilizes metabolic interference and mass spectrometry to produce and analyze modified, myristoylated small GTPase ADP-ribosylation factorâ 1 (Arf1). The capacities of these recombinant proteins to bind liposomes and load and hydrolyze GTP were measured and compared with the unmodified myristoylated Arf1. The ketone-modified myristoylated Arf1 could be further labeled by fluorophore-coupled hydrazine and subsequently visualized through fluorescence imaging. This methodology provides an effective model system to characterize lipid-modified proteins with additional functions before applying them to cellular systems.
Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Ácido Mirístico/química , Fator 1 de Ribosilação do ADP/química , Fator 1 de Ribosilação do ADP/genética , Cromatografia Líquida de Alta Pressão , Corantes Fluorescentes/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrazinas/química , Hidrólise , Lipossomos/química , Lipossomos/metabolismo , Peptídeos/análise , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas em TandemRESUMO
Both the Wnt/ß-catenin signaling pathway and small GTPases of the ADP-ribosylation factors (ARF) family play important roles in regulating cell development, homeostasis and fate. The previous report of QS11, a small molecule Wnt synergist that binds to ARF GTPase-activating protein 1 (ARFGAP1), suggests a role for ARFGAP1 in the Wnt/ß-catenin pathway. However, direct inhibition of enzymatic activity of ARFGAP1 by QS11 has not been established. Whether ARFGAP1 is the only target that contributes to QS11's Wnt synergy is also not clear. Here we present structure-activity relationship (SAR) studies of QS11 analogs in two assays: direct inhibition of enzymatic activity of purified ARFGAP1 protein and cellular activation of the Wnt/ß-catenin pathway. The results confirm the direct inhibition of ARFGAP1 by QS11, and also suggest the presence of other potential cellular targets of QS11.
Assuntos
Proteínas Ativadoras de GTPase/antagonistas & inibidores , Purinas/química , Purinas/farmacologia , Proteínas Wnt/agonistas , Via de Sinalização Wnt/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Estrutura Molecular , Purinas/síntese química , Relação Estrutura-Atividade , beta Catenina/metabolismoRESUMO
Cancer is typically treated with combinatorial therapy, and such combinations may be synergistic. However, discovery of these combinations has proven difficult as brute force combinatorial screening approaches are both logistically complex and resource-intensive. Therefore, computational approaches to augment synergistic drug discovery are of interest, but current approaches are limited by their dependencies on combinatorial drug screening training data or molecular profiling data. These dataset dependencies can limit the number and diversity of drugs for which these approaches can make inferences. Herein, we describe a novel computational framework, ReCorDE (Recurrent Correlation of Drugs with Enrichment), that uses publicly-available cell line-derived monotherapy cytotoxicity datasets to identify drug classes targeting shared vulnerabilities across multiple cancer lineages; and we show how these inferences can be used to augment synergistic drug combination discovery. Additionally, we demonstrate in preclinical models that a drug class combination predicted by ReCorDE to target shared vulnerabilities (PARP inhibitors and Aurora kinase inhibitors) exhibits class-class synergy across lineages. ReCorDE functions independently of combinatorial drug screening and molecular profiling data, using only extensive monotherapy cytotoxicity datasets as its input. This allows ReCorDE to make robust inferences for a large, diverse array of drugs. In conclusion, we have described a novel framework for the identification of drug classes targeting shared vulnerabilities using monotherapy cytotoxicity datasets, and we showed how these inferences can be used to aid discovery of novel synergistic drug combinations.
RESUMO
HER2-positive (HER2+) breast cancer accounts for 20-30% of all breast cancers. Although trastuzumab has significantly improved the survival of patients with HER2+ breast cancer, more than 70% of patients develop drug resistance within one year of treatment. Differential-gene-expression analysis of trastuzumab-sensitive and resistant HER2+ breast cancer cell lines from GSE15043 was performed to identify the biomarkers associated with trastuzumab resistance. Differential biomarker expression was confirmed in FFPE tissues collected from clinical HER2+ breast cancer tumor samples that were sensitive or resistant to trastuzumab treatment. UGT1A7, a member of the uronic acid transferase family, was associated with trastuzumab resistance. UGT1A7 expression was downregulated in trastuzumab-resistant tumor tissues and in a cell line that developed trastuzumab resistance (BT474TR). Overexpressing UGT1A7 in BT474TR restored their sensitivity to trastuzumab treatment, whereas downregulating UGT1A7 expression in parental cells led to trastuzumab resistance. Importantly, UGT1A7 localized to the endoplasmic reticulum and altered stress responses. Furthermore, downregulating UGT1A7 expression promoted epithelial-to-mesenchymal transition (EMT) by affecting TWIST, SNAIL, and GRP78 expression and the AMP-activated protein kinase signaling pathway, thus contributing to trastuzumab resistance. This study demonstrated the important role and novel mechanisms of UGT1A7 in tumor responses to trastuzumab. Low UGT1A7 expression plays an important role in EMT and contributes to trastuzumab resistance. UGT1A7 has the potential to be developed as a biomarker for identifying patients who are resistant to trastuzumab treatment.
Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Chaperona BiP do Retículo Endoplasmático , Transição Epitelial-Mesenquimal , Glucuronosiltransferase , Receptor ErbB-2 , Trastuzumab , Humanos , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Glucuronosiltransferase/metabolismo , Glucuronosiltransferase/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Linhagem Celular Tumoral , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Camundongos , AnimaisRESUMO
Francisella tularensis is a Gram-negative facultative intracellular bacterial pathogen that is classified by the Centers for Disease Control and Prevention as a Tier 1 Select Agent. F. tularensis infection causes the disease tularemia, also known as rabbit fever. Treatment of tularemia is limited to few effective antibiotics which are associated with high relapse rates, toxicity, and potential emergence of antibiotic-resistant strains. Consequently, new therapeutic options for tularemia are needed. Through screening a focused chemical library and subsequent structure-activity relationship studies, we have discovered a new and potent inhibitor of intracellular growth of Francisella tularensis, D8-03. Importantly, D8-03 effectively reduces bacterial burden in mice infected with F. tularensis. Preliminary mechanistic investigations suggest that D8-03 works through a potentially novel host-dependent mechanism and serves as a promising lead compound for further development.
Assuntos
Antibacterianos , Francisella tularensis , Tularemia , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/crescimento & desenvolvimento , Animais , Tularemia/tratamento farmacológico , Tularemia/microbiologia , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Relação Estrutura-Atividade , Humanos , Testes de Sensibilidade Microbiana , Descoberta de Drogas , Feminino , Modelos Animais de DoençasRESUMO
Most patients with metastatic prostate cancer eventually develop resistance to primary androgen deprivation therapy. To identify predictive biomarker for Abiraterone acetate/prednisone resistance, we screened alternative splice variants between responders and non-responders from the PROMOTE clinical study and pinned down the most significant variant, CENPK-delta8. Through preclinical patient-derived mouse xenograft (PDX) and 3D organoids obtained from responders and non-responders, as well as in vitro models, aberrant CENPK-delta8 expression was determined to link to drug resistance via enhanced migration and proliferation. The FLNA and FLOT1 were observed to specifically bind to CENK-delta8 rather than wild-type CENPK, underscoring the role of CENPK-delta8 in cytoskeleton organization and cell migration. Our study, leveraging data from the PROMOTE study, TCGA, and TCGA SpliceReq databases, highlights the important function of alternative splice variants in drug response and their potential to be prognostic biomarkers for improving individual therapeutic outcomes in precision medicine.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Camundongos , Processamento Alternativo/genética , Processamento Alternativo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Metástase Neoplásica , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Linhagem Celular Tumoral , Androstenos/farmacologia , Androstenos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Background: Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. Inflammation and mitochondrial dysfunction are the most common histopathological findings. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM patients, highlighting sex differences. Methods: We included 38 IBM patients and 22 age- and sex-matched controls without myopathy. Bulk RNA sequencing, Meso Scale Discovery ELISA, western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. Results: We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome pathway being the most upregulated. On muscle histopathology, there is increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibers. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 activation. In the IBM muscle samples, we showed altered mitophagy, most significantly in males, with elevated levels of p-S65-Ubiquitin, a mitophagy marker. Furthermore, p-S65-Ubiquitin aggregates accumulated in muscle fibers that were mostly type 2 and devoid of cytochrome-c-oxidase reactivity. Type 2 muscle fibers are known to be more prone to mitochondrial dysfunction. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes but with loss of in muscle strength only in males. Finally, we identified sex-specific molecular pathways in IBM, with females having activation of pathways that could offset some of the pathomechanisms of IBM. Conclusions: NLRP3 inflammasome is activated in IBM, along with altered mitophagy particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
RESUMO
Nfu-type proteins are essential in the biogenesis of iron-sulfur (Fe-S) clusters in numerous organisms. A number of phenotypes including low levels of Fe-S cluster incorporation are associated with the deletion of the gene encoding a chloroplast-specific Nfu-type protein, Nfu2 from Arabidopsis thaliana (AtNfu2). Here, we report that recombinant AtNfu2 is able to assemble both [2Fe-2S] and [4Fe-4S] clusters. Analytical data and gel filtration studies support cluster/protein stoichiometries of one [2Fe-2S] cluster/homotetramer and one [4Fe-4S] cluster/homodimer. The combination of UV-visible absorption and circular dichroism and resonance Raman and Mössbauer spectroscopies has been employed to investigate the nature, properties, and transfer of the clusters assembled on Nfu2. The results are consistent with subunit-bridging [2Fe-2S](2+) and [4Fe-4S](2+) clusters coordinated by the cysteines in the conserved CXXC motif. The results also provided insight into the specificity of Nfu2 for the maturation of chloroplastic Fe-S proteins via intact, rapid, and quantitative cluster transfer. [2Fe-2S] cluster-bound Nfu2 is shown to be an effective [2Fe-2S](2+) cluster donor for glutaredoxin S16 but not glutaredoxin S14. Moreover, [4Fe-4S] cluster-bound Nfu2 is shown to be a very rapid and efficient [4Fe-4S](2+) cluster donor for adenosine 5'-phosphosulfate reductase (APR1), and yeast two-hybrid studies indicate that APR1 forms a complex with Nfu2 but not with Nfu1 and Nfu3, the two other chloroplastic Nfu proteins. This cluster transfer is likely to be physiologically relevant and is particularly significant for plant metabolism as APR1 catalyzes the second step in reductive sulfur assimilation, which ultimately results in the biosynthesis of cysteine, methionine, glutathione, and Fe-S clusters.
Assuntos
Proteínas de Arabidopsis/química , Cloroplastos/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Endonucleases/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/química , Espectrofotometria Ultravioleta , Análise Espectral RamanRESUMO
Alzheimer's disease (AD) has no cure. Earlier, we showed that partial inhibition of mitochondrial complex I (MCI) with the small molecule CP2 induces an adaptive stress response, activating multiple neuroprotective mechanisms. Chronic treatment reduced inflammation, Aß and pTau accumulation, improved synaptic and mitochondrial functions, and blocked neurodegeneration in symptomatic APP/PS1 mice, a translational model of AD. Here, using serial block-face scanning electron microscopy (SBFSEM) and three-dimensional (3D) EM reconstructions combined with Western blot analysis and next-generation RNA sequencing, we demonstrate that CP2 treatment also restores mitochondrial morphology and mitochondria-endoplasmic reticulum (ER) communication, reducing ER and unfolded protein response (UPR) stress in the APP/PS1 mouse brain. Using 3D EM volume reconstructions, we show that in the hippocampus of APP/PS1 mice, dendritic mitochondria primarily exist as mitochondria-on-a-string (MOAS). Compared to other morphological phenotypes, MOAS have extensive interaction with the ER membranes, forming multiple mitochondria-ER contact sites (MERCS) known to facilitate abnormal lipid and calcium homeostasis, accumulation of Aß and pTau, abnormal mitochondrial dynamics, and apoptosis. CP2 treatment reduced MOAS formation, consistent with improved energy homeostasis in the brain, with concomitant reductions in MERCS, ER/UPR stress, and improved lipid homeostasis. These data provide novel information on the MOAS-ER interaction in AD and additional support for the further development of partial MCI inhibitors as a disease-modifying strategy for AD.