Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 13(1): 65, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29492695

RESUMO

Three-dimensional (3D) free-standing nanostructured materials have been proven to be one of the most promising electrodes for energy storage due to their enhanced electrochemical performance. And they are also widely studied for the wearable energy storage systems. In this work, interconnected V6O13 nanosheets were grown on the flexible carbonized textile (c-textile) via a seed-assisted hydrothermal method to form a 3D free-standing electrode for lithium-ion batteries (LIBs). The electrode exhibited a specific capacity of 170 mA h g-1 at a specific current of 300 mA g-1. With carbon nanotube (CNT) coating, its specific capacities further increased 12-40% at the various current rates. It could retain a reversible capacity of 130 mA h g-1, 74% of the initial capacity after 300 cycles at the specific current of 300 mA g-1. It outperformed most of the mixed-valence vanadium oxides. The improved electrochemical performance was ascribed to the synergistic effect of the 3D nanostructure of V6O13 for feasible Li+ diffusion and transport and highly conductive hierarchical conductive network formed by CNT and carbon fiber in c-textile.

2.
ACS Appl Mater Interfaces ; 10(4): 3938-3947, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29309733

RESUMO

Carbon hosts have been utilized to obtain composite cathodes with high sulfur loadings for Li-S batteries. However, the complicated synthesis process may hinder their practical applications. Their mechanical and electrochemical properties shall be further improved. Herein, a facile scalable dip-coating process is developed to synthesize a flexible composite cathode with a high sulfur loading. Via the process, a hybrid composed of carbon nanotubes, carbon black, sulfur, and titania nanoparticles is successfully conformally coated on the carbonized textile (c-textile). The formed flexible c-textile@S/TiO2 cathodes with sulfur loadings of 1.5 and 3.0 mg cm-2 can deliver reversible discharge capacities of 860 and 659 mA h g-1 at 2 C, respectively. For the latter one, it can retain 94% of the initial capacity after 400 cycles with a high Coulombic efficiency (∼96%). When its sulfur loading is further increased to 7.0 mg cm-2, its areal capacity reaches 5.2 mA h cm-2. Such excellent performance is ascribed to the synergy effect of the three-dimension conductive hierarchical pore structure and TiO2 additive. They can physically and chemically entrap the soluble polysulfides in the composite cathode. The as-synthesized free-standing composite electrode is of low cost and a high areal capacity, making it suitable for flexible energy storage applications based on Li-S batteries.

3.
ACS Nano ; 12(11): 11481-11490, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30395438

RESUMO

Hollow nanostructures are attractive for energy storage and conversion, drug delivery, and catalysis applications. Although these hollow nanostructures of compounds can be generated through the processes involving the well-established Kirkendall effect or ion exchange method, a similar process for the synthesis of the pure-substance one ( e. g., Si) remains elusive. Inspired by the above two methods, we introduce a continuous ultrathin carbon layer on the silica nano/microstructures (Stöber spheres, diatom frustules, sphere in sphere) as the stable reaction interface. With the layer as the diffusion mediator of the reactants, silica structures are successfully reduced into their porous silicon hollow counterparts with metal Al powder in AlCl3-NaCl molten salt. The structures are composed of silicon nanocrystallites with sizes of 15-25 nm. The formation mechanism can be explained as an etching-reduction/nucleation-growth process. When used as the anode material, the silicon hollow structure from diatom frustules delivers specific capacities of 2179, 1988, 1798, 1505, 1240, and 974 mA h g-1 at 0.5, 1, 2, 4, 6, and 8 A g-1, respectively. After being prelithiated, it retains 80% of the initial capacity after 1100 cycles at 8 A g-1. This work provides a general way to synthesize versatile silicon hollow structures for high-performance lithium ion batteries due to the existence of ample silica reactants and can be extended to the synthesis of hollow structures of other materials.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa