Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Trends Genet ; 39(10): 787-801, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633768

RESUMO

Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience.


Assuntos
Produtos Agrícolas , Fatores de Transcrição , Fatores de Transcrição/genética , Produtos Agrícolas/genética , Epigênese Genética , Edição de Genes , Transdução de Sinais/genética
2.
Crit Rev Biotechnol ; : 1-9, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719539

RESUMO

Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.

3.
Ecotoxicol Environ Saf ; 254: 114759, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36950993

RESUMO

Selenium is an important trace element that is beneficial to human health and can enhance plant resistance and crop quality. The occurrence of up-to-date nanotechnology greatly promotes the beneficial efficiency of this trace element on crops. The discovery of nano-Se increased the crop quality and reduced plant disease in different plant. In this study, we reduced sugarcane leaf scald disease incidence by exogenously spraying different concentrations (5 mg/L and 10 mg/L) of nano-Se. Additional studies revealed that spraying of nano-Se reduced reactive oxygen species (ROS) and H2O2 accumulation, and increased antioxidant enzyme activities in sugarcane. The nano-selenium treatments also increased the content of jasmonic acid (JA) and the expression of JA pathway genes. Furthermore, we also found that use nano-Se treatment in an appropriate way can enhance the quality of cane juice. The brix of the cane juice of the selenium-enriched treatment was significantly higher than that of the control group, which was 10.98% and 20.81% higher than that of the CK group, respectively. Meanwhile, the content of certain beneficial amino acids was increased, with the highest being 3.9 times higher than the control. Taken together, our findings inferred that nano-Se could act as a potential eco-fungicide to protect sugarcane from can be used as a potential ecological bactericide to protect sugarcane from Xanthomonas albilineans infections, and improve sugarcane quality. The results arising from this study not only introduces an ecological method to control X. albilineans, but also provides a deep insight into this trace elements for improving juice quality.


Assuntos
Saccharum , Selênio , Oligoelementos , Xanthomonas , Humanos , Selênio/farmacologia , Selênio/metabolismo , Oligoelementos/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo
4.
Pestic Biochem Physiol ; 195: 105575, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666601

RESUMO

Chlorogenic acid (CGA) is a potential botanical insecticide metabolite that naturally occurs in various plants. Our previous studies revealed CGA is sufficient to control the armyworm Mythimna separata. In this study, we conducted a proteomic analysis of saliva collected from M. separata following exposure to CGA and found that differentially expressed proteins (DEPs) treated with CGA for 6 h and 24 h were primarily enriched in glutathione metabolism and the pentose phosphate pathway. Notably, we observed six carboxylesterase (CarE) proteins that were enriched at both time points. Additionally, these corresponding genes were expressed at levels 5.05 to 130.25 times higher in our laboratory-selected resistance strains. We also noted a significant increase in the enzyme activity of carboxylesterase following treatments with varying CGA concentrations. Finally, we confirmed that knockdown of MsCarE14, MsCarE28, and MsCCE001h decreased the susceptibility to CGA in resistance strain, indicating three CarE genes play crucial roles in CGA detoxification. This study presents the first report on the salivary proteomics of M. separata, offering valuable insights into the role of salivary proteins. Moreover, the determination of CarE mediated susceptibility change to CGA provides new targets for agricultural pest control and highlights the potential insecticide resistance mechanism for pest resistance management.


Assuntos
Hidrolases de Éster Carboxílico , Inseticidas , Animais , Hidrolases de Éster Carboxílico/genética , Ácido Clorogênico/farmacologia , Inseticidas/farmacologia , Spodoptera , Proteômica , Carboxilesterase/genética , Transcrição Gênica
5.
Plant Dis ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227437

RESUMO

Capsicum chlorosis virus (CaCV; family Tospoviridae, genus Orthotospovirus) was first reported to infect capsicum (Capsicum annuum) and tomato (Solanum lycopersicum) in Australia in 2002 (McMichael et al., 2002). Subsequently, its infection was detected in different plants including waxflower (Hoya calycina Schlecter) in the United States (Melzer et al. 2014), peanut (Arachis hypogaea) in India (Vijayalakshmi et al. 2016), and spider lily (Hymenocallis americana) (Huang et al. 2017), Chilli pepper (Capsicum annuum) (Zheng et al. 2020), and Feiji cao (Chromolaena odorata) (Chen et al. 2022) in China. Ageratum conyzoides L. (commonly known as goat weed, family Asteraceae) is a natural weed in crop fields distributed in subtropical and tropical areas and a reservoir host of numerous plant pathogens (She et al. 2013). In April 2022, we observed that 90% of plants of A. conyzoides in maize fields in Sanya, Hainan province, China, exhibited typical virus-like symptoms of vein yellowing, leaf chlorosis, and distortion (Fig. S1 A-C). Total RNA was extracted from one symptomatic leaf of A. conyzoides. Small RNA libraries were constructed using the small RNA Sample Pre Kit (Illumina, San Diego, USA) for sequencing with an Illumina Novaseq 6000 platform (Biomarker Technologies Corporation, Beijing, China). A total 15,848,189 clean reads were obtained after removing low-quality reads. Quality-controlled qualified reads were assembled into contigs using Velvet 1.0.5 software with a k-mer value of 17. One hundred contigs shared nucleotide identity ranging from 85.7% to 100% with the CaCV using BLASTn searches online (https://blast.ncbi.nlm.nih.gov/Blast.cgi?). Numerous contigs (45, 34, and 21) obtained in this study were mapped to the L, M, and S RNA segments of the CaCV-Hainan isolate (GenBank accession no. KX078565- KX078567) from spider lily (Hymenocallis americana) in Hainan province, China, respectively. The full-length of L, M, and S RNA segments of CaCV-AC were determined to be 8,913, 4,841, and 3,629 bp, respectively (GenBank accession no. OQ597167- OQ597169). Furthermore, five symptomatic leaf samples were tested to be positive for CaCV using a CaCV enzyme-linked immunosorbent assay (ELISA) kit (MEIMIAN, Jiangsu, China) (Fig. S1-D). Total RNA from these leaves was amplified by RT-PCR with two sets of primer pairs. Primers CaCV-F (5'-ACTTTCCATCAACCTCTGT-3') and CaCV-R (5'-GTTATGGCCATATTTCCCT-3') were used for the amplification of 828 bp fragment from nucleocapsid protein (NP) on CaCV S RNA. While another, primers gL3637 (5'-CCTTTAACAGTDGAAACAT-3') and gL4435c (5'-CATDGCRCAAGARTGRTARACAGA-3') were used for the amplification of 816 bp fragment from RNA-dependent RNA polymerase (RdRP) on CaCV L RNA (Fig. S1-E and -F) (Basavaraj et al. 2020). These amplicons were cloned into the pCE2 TA/Blunt-Zero vector (Vazyme, Nanjing, China) and three independent positive colonies of Escherichia coli DH5α carrying each viral amplicon were sequenced. These sequences were deposited in the GenBank database under accession nos. OP616700-OP616709. Pairwise sequence comparison revealed that nucleotide sequences of NP and RdRP genes of the five CaCV isolates shared 99.5% (812 bp out of 828 bp) and 99.4% (799 bp out of 816 bp) nucleotide identities, respectively. They showed 86.2-99.2% and 86.5-99.1% nucleotide identities with corresponding nucleotide sequences of other CaCV isolates derived from GenBank database, respectively. The highest nucleotide sequence identity (99%) of the CaCV isolates obtained in the study was observed with the CaCV-Hainan isolate. Phylogenetic analysis based on NP amino acid demonstrated that six CaCV isolates (this study = 5 and NCBI database = 1) clustered into one distinct clade (Fig. S2). Our data confirmed for the first time the presence of CaCV naturally infecting A. conyzoides plant in China, which enriches information on the host range and will be helpful for disease management.

6.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362319

RESUMO

Sugarcane leaf scald is a systemic disease caused by Xanthomonas albilineans that limits sugarcane yield and quality. Previous research has shown that exogenous application of copper hydroxide to plants is effective in controlling this disease. However, long-term bactericide use causes serious "3R" problems: resistance, resurgence, and residue. It is therefore urgent to discover new methods for the improvement of bactericide efficiency and efficacy. In the present study, disease index values for leaf scald were measured in sugarcane seedlings over time to determine the effects of different concentrations of copper hydroxide, types of silicon additive, and treatment timing after inoculation with X. albilineans on controlling sugarcane leaf scald disease. Our results show copper hydroxide mixed with organosilicon additive could improve the bactericide efficiency and efficacy and reduce the growth of pathogenic bacteria, even at a reduced concentration in both laboratory and field conditions. This study provides an important practical model for controlling sugarcane leaf scald disease by reducing the concentration of bactericide and increasing its efficacy in sugarcane fields.


Assuntos
Saccharum , Xanthomonas , Saccharum/microbiologia , Folhas de Planta/microbiologia
7.
Physiol Plant ; 171(1): 86-107, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32909626

RESUMO

To systematically analyze mitogen-activated protein (MAP) kinase gene families and their expression profiles in sugarcane (Saccharum spp. hybrids; Sh) under diverse biotic and abiotic stresses, we identified 15 ShMAPKs, 6 ShMAPKKs and 16 ShMAPKKKs genes in the sugarcane cultivar R570 genome. These were also confirmed in one S. spontaneum genome and two transcriptome datasets of sugarcane trigged by Acidovorax avenae subsp. avenae (Aaa) and Xanthomonas albilineans (Xa) infections. Phylogenetic analysis revealed that four subgroups were present in each ShMAPK and ShMAPKK family and three sub-families (RAF, MEKK and ZIK) presented in the ShMAPKKK family. Conserved protein motif and gene structure analyses supported the evolutionary relationships of the three families inferred from the phylogenetic analysis. All of the ShMAPK, ShMAPKK and ShMAPKKK genes identified in Saccharum spp. R570 were distributed on chromosomes 1-7 and 9-10. RNA-seq and qRT-PCR analyses indicated that ShMAPK07 and ShMAPKKK02 were defense-responsive genes in sugarcane challenged by both Aaa and Xa stimuli, while some genes were upregulated specifically by Aaa and Xa infection. Additionally, ShMAPK05 acted as a negative regulator under drought and salinity stress, but served as a positive regulator under salicylic acid (SA) treatment. ShMAPK07 plays a positive role under drought stress, but a negative role under SA treatment. ShMAPKKK01 was negatively modulated by both salinity stress and SA treatment, whereas ShMAPKKK06 was positively regulated by both of the two stress stimuli. Our results suggest that members of MAPK cascade gene families regulate adverse stress responses through multiple signal transduction pathways in sugarcane.


Assuntos
Saccharum , Comamonadaceae , Regulação da Expressão Gênica de Plantas , Mitógenos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharum/genética , Estresse Fisiológico/genética
8.
Arch Insect Biochem Physiol ; 106(4): e21772, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33719088

RESUMO

The ß-adrenergic-like octopamine receptor (OA2B2), which binds the biogenic amine octopamine, belongs to the class of G-protein coupled receptors and significantly regulates many physiological and behavioral processes in insects. In this study, the putative open reading frame sequence of the MsOA2B2 gene in Mythimna separata was cloned, the full-length complementary DNA was 1191 bp and it encoded a 396-amino acid protein (GenBank accession number MN822800). Orthologous sequence alignment, phylogenetic tree analysis, and protein sequence analysis all showed that the cloned receptor belongs to the OA2B2 protein family. Real-time quantitative polymerase chain reaction of spatial and temporal expression analysis revealed that the MsOAB2 gene was expressed in all developmental stages of M. separata and was most abundant in egg stages and second and fourth instars compared with other developmental stages, while the expression level during the pupal stage was much lower than that at the other stages. Further analysis with sixth instar M. separata larvae showed that the MsOA2B2 gene was expressed 1.81 times higher in the head than in integument and gut tissues. Dietary ingestion of dsMsOA2B2 significantly reduced the messenger RNA level of MsOA2B2 and decreased mortality following amitraz treatment. This study provides both a pharmacological characterization and the gene expression patterns of OA2B2 in M. separata, facilitating further research for insecticides using MsOA2B2 as a target.


Assuntos
Mariposas/genética , Receptores de Amina Biogênica , Animais , Expressão Gênica/efeitos dos fármacos , Genes de Insetos , Controle de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Larva/genética , Larva/metabolismo , Mariposas/metabolismo , Filogenia , Pupa/genética , Pupa/metabolismo , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo , Receptores de Amina Biogênica/química , Receptores de Amina Biogênica/efeitos dos fármacos , Receptores de Amina Biogênica/genética , Receptores de Amina Biogênica/metabolismo , Toluidinas/farmacologia
9.
Ecotoxicol Environ Saf ; 220: 112380, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058676

RESUMO

Silicon (Si) is considered to be a plant growth and development regulator element as well as provide the regulatory response against various biotic stressors. However, the potential mechanism of Si enhancement to regulate plant disease resistance remains to be studied. Therefore, the current study evaluated the effects of Si application on the performance of sugarcane against Xanthomonas albilineans (Xa) infection. Si was applied exogenously (0, 3.85 and 7.70 g Si/kg soil) and the results show that plant height, stem circumference and leaf width of siliconized sugarcane have been improved, which effectively reduced the disease index (0.17-0.21) and incidence (58.2%-69.1%) after Xa infection. Lowest values of MDA (348.5 nmol g-1 FW) and H2O2 (3539.4 mmol/L) were observed in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (MDA: 392.6 nmol g-1 FW and H2O2: 3134.6 mmol/L) than that of the control. Whereas, PAL enzyme activity (50.8 mmol/L), JA (230.2 mmol/L) and SA (2.7 ug mL-1) contents were significantly higher in 7.70 g Si/kg soil followed by in 3.85 g Si/kg soil (PAL: 46.3 mmol/L, JA: 182.7 mmol/L and SA: 2.4 ug mL-1) as compared to control. The lower MDA, H2O2 level and higher enzymatic activities were associated with the highest expression levels of their metabolic pathway associated genes i.e., ShMAPK1, ShLOX, ShPAL, ShAOS, ShAOC, ShC4H, ShCAT, Sh4CL and ShNPR1 (22.08, 15.56, 10.42, 3.35, 2.54, 2.14, 1.82, 1.67 and 1.22 folds, respectively) in 7.70 g Si/kg soil as compared to other experimental units and control. Overall, the results of current study indicates that siliconized sugarcane more actively regulates disease resistance through modulation of growth and MDA, H2O2, SA and JA associated metabolic pathways.


Assuntos
Resistência à Doença , Doenças das Plantas/microbiologia , Saccharum/efeitos dos fármacos , Silício/farmacologia , Xanthomonas , Resistência à Doença/genética , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Redes e Vias Metabólicas/genética , Estresse Oxidativo , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta , Caules de Planta , Saccharum/crescimento & desenvolvimento , Saccharum/metabolismo , Saccharum/microbiologia , Silício/metabolismo , Solo/química , Estresse Fisiológico , Xanthomonas/crescimento & desenvolvimento
10.
Plant Dis ; 105(11): 3451-3458, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34142842

RESUMO

Leaf scald, a bacterial disease caused by Xanthomonas albilineans (Ashby) Dowson, is a major limiting factor for sugarcane production worldwide. Accurate identification and quantification of X. albilineans is a prerequisite for successful management of this disease. A sensitive and robust quantitative PCR (qPCR) assay was developed in this study for detection and quantification of X. albilineans using TaqMan probe and primers targeting a putative adenosine triphosphate-binding cassette (ABC) transporter gene (abc). The novel qPCR assay was highly specific to the 43 tested X. albilineans strains belonging to different pulsed-field gel electrophoresis groups. The detection thresholds were 100 copies/µl of plasmid DNA, 100 fg/µl of bacterial genomic DNA, and 100 CFU/ml of bacterial suspension prepared from pure culture. This qPCR assay was 100 times more sensitive than a conventional PCR assay. The pathogen was detected by qPCR in 75.1% (410/546) of symptomless stalk samples, whereas only 28.4% (155/546) of samples tested positive by conventional PCR. Based on qPCR data, population densities of X. albilineans in symptomless stalks of the same varieties differed between two sugarcane production areas in China, Beihai (Guangxi Province) and Zhanjiang (Guangdong Province), and no significant correlation between these populations was identified. Furthermore, no relationship was found between these populations of the pathogen in asymptomatic stalks and the resistance level of the sugarcane varieties to leaf scald. The newly developed qPCR assay proved to be highly sensitive and reliable for the detection and quantification of X. albilineans in sugarcane stalks.


Assuntos
Saccharum , Xanthomonas , China , Folhas de Planta , Reação em Cadeia da Polimerase , Xanthomonas/genética
11.
Plant Dis ; 105(4): 896-903, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33044140

RESUMO

Maize yellow mosaic virus (MaYMV) hosted in various gramineous plants was assigned to the genus Polerovirus (family Luteoviridae) in 2018. However, little is known about its genetic diversity and population structure. In this study, 509 sugarcane leaf samples with mosaic symptoms were collected in 2017 to 2019 from eight sugarcane-growing provinces in China. Reverse-transcription PCR results revealed that four positive-sense RNA viruses were found to infect sugarcane, and the incidence of MaYMV among samples from Fujian, Sichuan, and Guangxi Provinces was 52.1, 9.8, and 2.5%, respectively. Based on 82 partial MaYMV sequences and 46 whole-genome sequences from different host plants, phylogenetic analysis revealed that MaYMV populations are very closely associated with their source geographical regions (China, Africa, and South America). Pairwise identity analysis showed significant variability in genome sequences among MaYMV isolates with genomic nucleotide identities of 91.1 to 99.9%. In addition to codon mutations, insertions or deletions also contributed to genetic variability in individual coding regions, especially in the readthrough protein (P3-P5 fusion protein). Low gene flow and significant genetic differentiation of MaYMV were observed among the three geographical populations, suggesting that environmental adaptation is an important evolutionary force that shapes the genetic structure of MaYMV. Genes in the MaYMV genome were subject to strong negative or purification selection during evolution, except for the movement protein (MP), which was under positive selection pressure. This finding suggests that the MP may play an important role in MaYMV evolution. Taken together, our findings provide basic information for the development of an integrated disease management strategy against MaYMV.


Assuntos
Luteoviridae , Vírus do Mosaico , China , Evolução Molecular , Genoma Viral/genética , Luteoviridae/genética , Vírus do Mosaico/genética , Filogenia , Doenças das Plantas , América do Sul , Zea mays
12.
Arch Insect Biochem Physiol ; 103(4): e21651, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31943343

RESUMO

DNA methylation refers to the addition of cytosine residues in a CpG context (5'-cytosine-phosphate-guanine-3'). As one of the most common mechanisms of epigenetic modification, it plays a crucial role in regulating gene expression and in a diverse range of biological processes across all multicellular organisms. The relationship between temperature and DNA methylation and how it acts on the adaptability of migratory insects remain unknown. In the present work, a 5,496 bp full-length complementary DNA encoding 1,436 amino acids (named MsDnmt1) was cloned from the devastating migratory pest oriental armyworm, Mythimna separata Walker. The protein shares 36.8-84.4% identity with other insect Dnmt1 isoforms. Spatial and temporal expression analysis revealed that MsDnmt1 was highly expressed in adult stages and head tissue. The changing temperature decreased the expression of MsDnmt1 in both high and low temperature condition. Besides, we found that M. separata exhibited the shortest duration time from the last instar to pupae under 36°C environment when injected with DNA methylation inhibitor. Therefore, our data highlight a potential role for DNA methylation in thermal resistance, which help us to understand the biological role adaptability and colonization of migratory pest in various environments.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , Proteínas de Insetos/genética , Mariposas/fisiologia , Sequência de Aminoácidos , Animais , Temperatura Corporal , DNA (Citosina-5-)-Metiltransferase 1/química , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/genética , Mariposas/crescimento & desenvolvimento , Óvulo/crescimento & desenvolvimento , Óvulo/fisiologia , Filogenia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Alinhamento de Sequência
13.
Plant Dis ; 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32876534

RESUMO

In recent years, outbreaks of leaf scald have been reported in two chewing cane clones "Guangdong Huangpi" and "Taoshang Guozhe" in Zhejiang province, China. From May to July 2019, we collected 11 and 13 leaf or stalk samples from symptomatic "Guangdong Huangpi" from four farms in Wenling and "Taoshang Guozhe" clones from three farms in Ruian, Zhejiang province, respectively. Leaves in young plants exhibited white pencil-line streaks (Supplement Fig. 1A & 1D) as well as partial or complete chlorosis of the leaf blade (Supplement Fig. 1B & 1E). Internal symptoms included an orange-red discoloration of the vascular bundles at the basal nodes of the stalk and discoloration extension into the internodes (Supplement Fig. 1C & 1F). Leaf and stalk tissues were used for bacterial isolation and purification on XAS medium, which is selective for Xanthomonas albilineans (Davis et al. 1994), using the streak plate method to obtain 24 isolates (Lin et al. 2018). Circular, convex, smooth, shiny and yellow colonies were isolated from all the samples. The pathogenicity of two isolates, XaCN30 from "Guangdong Huangpi" and XaCN43 from "Taoshang Guozhe", was confirmed with Koch's postulates according to the protocol reported by Lin et al. (2018). The incidences of diseased plants (56% and 63%) were observed in individual host clones at 28 d post-inoculation with isolates XaCN30 and XaCN43, respectively. Furthermore, all isolates were confirmed as X. albilineans via molecular methods. PCR amplification was conducted for all 24 isolates using the primer pairs XgyrB1F/XgyrB1R2 (Ntambo et al. 2019) and XAF1/XAR1 (Wang et al. 1999), which targeting the gyrB (encoding the b subunit of the DNA gyrase) and abc (encoding an ABC transporter) genes, and generating 904 bp and 608 bp amplicons, respectively. The PCR fragments were cloned into the pMD19-T vector (TaKaRa, Dalian, China). For each isolate, three single colonies of transformed Escherichia coli DH5α carrying targeted fragment were sequenced. These sequences were deposited into the GenBank with accession no. MT776053-MT776059 and MT776061-MT776077 for gyrB gene and MT776098-MT776104 and MT776106-MT776122 for abc gene. Based on the two concatenated DNA sequences of our 24 isolates, compared with 27 previously reported X. albilineans isolates obtained from the GenBank database, pairwise sequence identity analysis revealed that all 24 isolates from Zhejiang province had 99.4-100% identity with each other, 99.6-100% identity with 14 published domestic isolates, and 98.3-100% identity with 13 foreign isolates. Furthermore, phylogenetic analysis with MEGA 7.0 (Kumar et al. 2016) showed that the isolates from Zhejiang province clustered into two distinct groups (Supplement Fig. 2). One group consisted of 25 Chinese isolates (including all 11 isolates from Wenling) along with four isolates from the French West Indies (GPE PC73, GPE PC17, GPE PC86, and MTQ032), and one isolate from the USA (XaFL07-1), which were assigned to pulsed-field gel electrophoresis (PFGE) group B (Davis et al. 1997; Pieretti et al. 2012). A putative group was also proposed, which included all 13 isolates from Ruian, indicating that isolates from Ruian are distinct from the isolates isolated from other Chinese sugarcane-planting areas, including Wenling. We conclude that leaf scald disease in local clones of chewing cane are caused by X. albilineans in Zhejiang province in China, which will be helpful for leaf scald management in chewing cane, a cash crop.

14.
Plant Dis ; 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33118874

RESUMO

The pathogen of Pantoea stewartii subsp. stewartii (Pss) that is the causal agent of Stewart's bacterial wilt of corn also infects numerous experimental hosts of graminaceous plants (Pepper et al., 1967; Wang et al., 2012). However, little is known about this pathogen naturally infecting sugarcane. In 2017, we observed some sugarcane cultivars showing leaf blade bleaching at the disease initiation stage, which further resulted in development of blight and necrotic lesions (Figure 1-A and -B) in Zhanjiang, Guangdong province of China. To diagnose this putative disease, five symptomatic leaf samples were collected from different sugarcane cultivars. The Pss was found to infect these samples using the nested PCR with Pss-specific outer primers PS1/PS4 and inner primers Ps2r/Ps3r that targeted at the 16S rRNA gene of this pathogen (Wang et al., 2009). The expected 262-bp fragments from positive samples were amplified, cloned, and sequenced (GenBank accession no. MW015795-MW015799). BLASTN analysis revealed that these isolates had more than 99.5% nucleotide identify (222 bp out of 262 bp) with each other and with Pss strains (ATCC 8199 and DC283) as well as P. stewartii subsp. indologenes strains (SR2-12 and LMG 2632) after sequences were trimmed at the 5'- and 3'-terminal of inner primer sequences. In addition, these leaf samples were surface-sterilized with 75% alcohol followed by macerated and chopped in sterile water. Upon plating on solid NA medium at 28 °C for 24-36 h, the bacterial colonies exhibited yellow color with circular, convex, smooth and translucent edges (Figure 1-C). Straight rods and non-encapsulated cells were detected under transmission electron microscopy (Figure 1-D). Moreover, an identical colony termed as PSCN1 was isolated from sugarcane cultivar YZ08-1095 and was further confirmed by the PCR with a universal primer pair 63F (5'-CAGGCCTAACACATGCAAGTC-3') and 1387R (5'-GGGCGGWGTGTACAAGGC-3') that targeted at bacterial 16S rRNA gene (Marchesi et al., 1998). A 1362-bp DNA fragment sequence was obtained from PSCN1 strain and deposited on GenBank library (accession no. MW015767). Sequence analysis showed that PSCN1 shared 99.9-100% nucleotide identity (1315 bp out of 1362 bp) with the two reference strains of Pss (ATCC 8199 and DC283) after sequences were trimmed at the 5'- and 3'-terminal of primer sequences. According to Koch's postulates, pathogenicity test was carried out on YZ08-1095 plants with 3-5 fully developed leaf inoculated with the suspended cells (108 cells/ml) of PSCN1 strain by cutting the one-third of leaves before spraying with a suspension. Control plants were mock-inoculated with serial liquid nutrition agar medium. Two independent experiments were performed for pathogenicity assay and more than 28 plants of YZ08-1095 were used in each treatment. Plants were cultured in a growth chamber at 28 °C and 60% humidity under a 16 h light/8 h dark photoperiod. Leaves inoculated by the PSCN1 initially showed bleached, blight and wilting symptoms on leaf edges at seven days post-inoculation (dpi) (Figure 1-E and -F), which were similar to those symptoms observed in the fields. Control plants remained asymptomatic (Figure 1-G). The average incidence of diseased plant was 51.9% at 21 dpi. The bacteria were subsequently re-isolated from diseased leaves, and yielded colonies were completely identical to the PSCN1. Taken together, our data provides the valuable information for diagnosis and controlling this disease in sugarcane.

15.
Pestic Biochem Physiol ; 156: 56-62, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31027581

RESUMO

Glutamate-gated chloride channels (GluCls) mediate inhibitory synaptic transmission in invertebrate nervous systems, and only one GluCl gene has been found in insects. Therefore, insect GluCls are one of the major targets of insecticides including avermectins. In the present study, a 1347 bp full-length cDNA encoding a 449-amino acid protein (named MsGluCl, GenBank ID: MK336885) was cloned from the oriental armyworm, Mythimna separata, and characterized two alternative splicing variants of MsGluCl. The protein shares 76.9-98.6% identity with other insect GluCl isoforms. Spatial and temporal expression analysis revealed that MsGluCl was highly expressed in the 3rd instar and adult head. Dietary ingestion of dsMsGluCl significantly reduced the mRNA level of MsGluCl and decreased abamectin mortality. Thus, our results reveal that MsGluCl could be the molecular target of abamectin and provide the basis for further understanding the resistance mechanism to abamectin in arthropods.


Assuntos
Processamento Alternativo/genética , Canais de Cloreto/metabolismo , Clonagem Molecular/métodos , Mariposas/genética , Animais , Canais de Cloreto/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Ivermectina/farmacologia , Mariposas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Pestic Biochem Physiol ; 157: 186-195, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153467

RESUMO

The sugarcane shoot borer Chilo infuscatellus (Snellen) is known for causing severe damage to sugarcane yield in China. Methods have been developed to control this pest, including Cry toxin pesticide and transgenic Bt plants. In order to investigate the molecular mechanism of the Cry toxin binding process and provide a basis for understanding the insect's resistance mechanism, we used a high throughput sequencing platform to perform a de novo transcriptome assembly across different larval developmental stages and analyzed Cry toxin receptors based on our assembled transcripts. We cloned twelve Cry toxin receptor genes including 1 cadherin (Cad), 7 aminopeptidase-Ns (APNs), 3 alkaline phosphatases (ALPs), and 1 ATP-binding cassette transporter subfamily C2 (ABCC2), and three of them with full length. The sublethal dosage of Cry1Ac toxin was applied to sugarcane shoot borer and identified some Cry toxin receptor genes that were significantly induced after 48 h of exposure. Furthermore, quantitative RT-PCR was conducted to detect the expression profiles of these genes. Our transcriptome sequence data provided a valuable molecular resource for further study and the identified Cry toxin receptor data gave insights for improved research into the mechanism of Bt resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Saccharum/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Resistência a Inseticidas/genética , Mariposas , Plantas Geneticamente Modificadas/genética , Saccharum/genética
17.
Plant Dis ; 103(12): 3251-3258, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31596691

RESUMO

Ratoon stunting disease (RSD), one of the most important diseases of sugarcane, is caused by the bacterium Leifsonia xyli subsp. xyli (Lxx). Lxx infects sugarcane worldwide and RSD results in high yield losses and varietal degeneration. It is highly challenging to diagnose RSD based on visual symptomatology because this disease does not exhibit distinct external and internal symptoms. In this study, a novel Lxx-specific primer pair Lxx-F1/Lxx-R1 was designed to detect this pathogen using a conventional PCR assay. These primers were then compared with four published Lxx-specific primers and one universal Leifsonia generic primer pair LayF/LayR. Sugarcane leaf samples were collected from Saccharum spp. hybrids in commercial fields (315 samples) and from germplasm clones of five Saccharum species and Erianthus arundinaceus (216 samples). These samples were used for comparative field diagnosis with six conventional PCR assays. Sensitivity tests suggested that the PCR assay with primers Lxx-F1/Lxx-R1 had the same detection limit (1 pg of Lxx genomic DNA) as the primer pairs Cxx1/Cxx2 and CxxITSf#5/CxxITSr#5 and had 10-fold higher sensitivity than the primer pairs Pat1-F2/Pat1-R2, LayF/LayR, and C2F/C2R. Comparison of PCR assays revealed that natural Lxx-infection incidence (6.1%) in field sample evaluation identified by Lxx-F1/Lxx-R1 primers was higher than incidences (0.7 to 3.0%) determined by other primer pairs. Moreover, no nonspecific DNA amplification occurred within these field samples with Lxx-F1/Lxx-R1 primers, unlike with the primer pairs Cxx1/Cxx2 and LayF/LayR. Diverse Leifsonia strains were identified by PCR detection with LayF/LayR primers in the field samples, whereas whether these Leifsonia strains were pathogenic to sugarcane requires further research. Our investigations revealed that the PCR assay with the newly designed primers Lxx-F1/Lxx-R1 could be widely used for RSD diagnosis and Lxx-pathogen detection with satisfactory sensitivity and specificity.


Assuntos
Actinomycetales , Reação em Cadeia da Polimerase , Saccharum , Actinomycetales/genética , Primers do DNA/genética , Saccharum/microbiologia , Sensibilidade e Especificidade
18.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817492

RESUMO

Sugarcane (Saccharum spp. hybrids) is a major source of sugar and renewable bioenergy crop worldwide and suffers serious yield losses due to many pathogen infections. Leaf scald caused by Xanthomonas albilineans is a major bacterial disease of sugarcane in most sugarcane-planting countries. The molecular mechanisms of resistance to leaf scald in this plant are, however, still unclear. We performed a comparative transcriptome analysis between resistant (LCP 85-384) and susceptible (ROC20) sugarcane cultivars infected by X. albilineans using the RNA-seq platform. 24 cDNA libraries were generated with RNA isolated at four time points (0, 24, 48, and 72 h post inoculation) from the two cultivars with three biological replicates. A total of 105,783 differentially expressed genes (DEGs) were identified in both cultivars and the most upregulated and downregulated DEGs were annotated for the processes of the metabolic and single-organism categories, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the 7612 DEGs showed that plant-pathogen interaction, spliceosome, glutathione metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction contributed to sugarcane's response to X. albilineans infection. Subsequently, relative expression levels of ten DEGs determined by quantitative reverse transcription-PCR (qRT-PCR), in addition to RNA-Seq data, indicated that different plant hormone (auxin and ethylene) signal transduction pathways play essential roles in sugarcane infected by X. albilineans. In conclusion, our results provide, for the first time, valuable information regarding the transcriptome changes in sugarcane in response to infection by X. albilineans, which contribute to the understanding of the molecular mechanisms underlying the interactions between sugarcane and this pathogen and provide important clues for further characterization of leaf scald resistance in sugarcane.


Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Folhas de Planta , Saccharum , Transcriptoma , Xanthomonas , Perfilação da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Saccharum/genética , Saccharum/microbiologia
19.
Pestic Biochem Physiol ; 148: 34-41, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29891375

RESUMO

The ryanodine receptors of insects are the main target sites of diamide insecticides, which show highly selective insecticidal activity relative to toxicity in mammals and provide a novel option for managing lepidopteran pests. The oriental armyworm, Mythimna separata (Walker), is a destructive pest of agricultural crops, and great efforts have been undertaken to control this pest including repeated insecticide applications. In this study, full-length cDNA of a ryanodine receptor gene from M. separata (MsRyR) was cloned and characterized. The cDNA of MsRyR had a 15,372 bp open reading frame and encoded 5124 amino acids (GenBank ID: MG712298). MsRyR shares 78-97% identity with RyR isoforms of other insects, and <50% identities with Homo sapiens RyRs 1-3. Temporal and spatial expression analysis detected MsRyR at all developmental stages and in all tissues. The highest relative levels of MsRyR were detected in the second instar and head. Exposure to chlorantraniliprole after 24 h significantly increased the expression levels of whole body MsRyR mRNA. In addition, dietary ingestion of dsMsRyR significantly reduced the mRNA level of MsRyR and greatly decreased chlorantraniliprole-induced mortality. Our results revealed that the MsRyR could be the molecular target of chlorantraniliprole, and provided the basis for further understanding the resistance mechanism of chlorantraniliprole.


Assuntos
Inativação Gênica , Genes de Insetos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Lepidópteros/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , ortoaminobenzoatos/farmacologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Produtos Agrícolas , DNA Complementar , Perfilação da Expressão Gênica , Lepidópteros/genética , Lepidópteros/crescimento & desenvolvimento , Fases de Leitura Aberta , Filogenia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
20.
Arch Virol ; 161(6): 1493-503, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26973230

RESUMO

Sugarcane streak mosaic virus (SCSMV), an economically important causal agent of mosaic disease of sugarcane, is a member of the newly created genus Poacevirus in the family Potyviridae. In this study, we report the molecular characterization of three new SCSMV isolates from China (YN-YZ211 and HN-YZ49) and Myanmar (MYA-Formosa) and their genetic variation and phylogenetic relationship to SCSMV isolates from Asia and the type members of the family Potyviridae. The complete genome of each of the three isolates was determined to be 9781 nucleotides (nt) in size, excluding the 3' poly(A) tail. Phylogenetic analysis of the complete polyprotein amino acid (aa) sequences (3130 aa) revealed that all SCSMV isolates clustered into a phylogroup specific to the genus Poacevirus and formed two distinct clades designated as group I and group II. Isolates YN-YZ211, HN-YZ49 and MYA-Formosa clustered into group I, sharing 96.8-99.5 % and 98.9-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, among themselves and 81.2-98.8 % and 94.0-99.6 % nt (at the complete genomic level) and aa (at the polyprotein level) identity, respectively, with the corresponding sequences of seven Asian SCSMV isolates. Population genetic analysis revealed greater between-group (0.190 ± 0.004) than within-group (group I = 0.025 ± 0.001 and group II = 0.071 ± 0.003) evolutionary divergence values, further supporting the results of the phylogenetic analysis. Further analysis indicated that natural selection might have contributed to the evolution of isolates belonging to the two identified SCSMV clades, with infrequent genetic exchanges occurring between them over time. These findings provide a comprehensive analysis of the population genetic structure and driving forces for the evolution of SCSMV with implications for global exchange of sugarcane germplasm.


Assuntos
Potyviridae/genética , Saccharum/virologia , Ásia , DNA Viral/genética , Evolução Molecular , Variação Genética , Genoma Viral , Filogenia , Doenças das Plantas/virologia , Potyviridae/classificação , Potyviridae/isolamento & purificação , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa