Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Am Chem Soc ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602511

RESUMO

Meroterpenoid clavilactones feature a unique benzo-fused ten-membered carbocyclic ring unit with an α,ß-epoxy-γ-lactone moiety, forming an intriguing 10/5/3 tricyclic nested skeleton. These compounds are good inhibitors of the tyrosine kinase, attracting a lot of chemical synthesis studies. However, the natural enzymes involved in the formation of the 10/5/3 tricyclic nested skeleton remain unexplored. Here, we identified a gene cluster responsible for the biosynthesis of clavilactone A in the basidiomycetous fungus Clitocybe clavipes. We showed that a key cytochrome P450 monooxygenase ClaR catalyzes the diradical coupling reaction between the intramolecular hydroquinone and allyl moieties to form the benzo-fused ten-membered carbocyclic ring unit, followed by the P450 ClaT that exquisitely and stereoselectively assembles the α,ß-epoxy-γ-lactone moiety in clavilactone biosynthesis. ClaR unprecedentedly acts as a macrocyclase to catalyze the oxidative cyclization of the isopentenyl to the nonterpenoid moieties to form the benzo-fused macrocycle, and a multifunctional P450 ClaT catalyzes a ten-electron oxidation to accomplish the biosynthesis of the 10/5/3 tricyclic nested skeleton in clavilactones. Our findings establish the foundation for the efficient production of clavilactones using synthetic biology approaches and provide the mechanistic insights into the macrocycle formation in the biosynthesis of fungal meroterpenoids.

2.
Org Biomol Chem ; 22(19): 3843-3847, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38618942

RESUMO

A short and chemoenzymatic synthesis of rotigotine using an IR-36-M5 mutant is reported. Focusing on the residues that directly contact the 2-tetralone moiety, we applied structure-guided semi-rational design to obtain a double-mutant F260W/M147Y, which showed a good isolated yield and S-stereoselectivity >99% toward 2-aminotetralin synthesis. Furthermore, the utility of this biocatalytic protocol was successfully demonstrated in the enantioselective synthesis of rotigotine via enzymatic reductive amination as the key step.


Assuntos
Tetra-Hidronaftalenos , Tiofenos , Aminação , Tiofenos/química , Tiofenos/síntese química , Tetra-Hidronaftalenos/síntese química , Tetra-Hidronaftalenos/química , Biocatálise , Estereoisomerismo , Oxirredução , Irídio/química , Estrutura Molecular , Catálise
3.
Appl Microbiol Biotechnol ; 108(1): 323, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713233

RESUMO

Ergot alkaloids (EAs) are a diverse group of indole alkaloids known for their complex structures, significant pharmacological effects, and toxicity to plants. The biosynthesis of these compounds begins with chanoclavine-I aldehyde (CC aldehyde, 2), an important intermediate produced by the enzyme EasDaf or its counterpart FgaDH from chanoclavine-I (CC, 1). However, how CC aldehyde 2 is converted to chanoclavine-I acid (CC acid, 3), first isolated from Ipomoea violacea several decades ago, is still unclear. In this study, we provide in vitro biochemical evidence showing that EasDaf not only converts CC 1 to CC aldehyde 2 but also directly transforms CC 1 into CC acid 3 through two sequential oxidations. Molecular docking and site-directed mutagenesis experiments confirmed the crucial role of two amino acids, Y166 and S153, within the active site, which suggests that Y166 acts as a general base for hydride transfer, while S153 facilitates proton transfer, thereby increasing the acidity of the reaction. KEY POINTS: • EAs possess complicated skeletons and are widely used in several clinical diseases • EasDaf belongs to the short-chain dehydrogenases/reductases (SDRs) and converted CC or CC aldehyde to CC acid • The catalytic mechanism of EasDaf for dehydrogenation was analyzed by molecular docking and site mutations.


Assuntos
Aldeídos , Alcaloides de Claviceps , Aldeídos/metabolismo , Aldeídos/química , Domínio Catalítico , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/química , Alcaloides de Claviceps/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química
4.
Molecules ; 29(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542964

RESUMO

(R)-Homobenzylic amines are key structural motifs present in (R)-selegiline, a drug indicated for the treatment of early-stage Parkinson's disease. Herein, we report a new short chemoenzymatic approach (in 2 steps) towards the synthesis of (R)-selegiline via stereoselective biocatalytic reductive amination as the key step. The imine reductase IR36-M5 mutant showed high conversion (97%) and stereoselectivity (97%) toward the phenylacetone and propargyl amine substrates, offering valuable biocatalysts for synthesizing alkylated homobenzylic amines.


Assuntos
Oxirredutases , Selegilina , Oxirredutases/metabolismo , Iminas , Estereoisomerismo , Aminas/química , Aminação , Biocatálise
5.
Org Biomol Chem ; 21(20): 4181-4184, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37129863

RESUMO

Although imine reductase (IRED)-catalyzed reductive amination is promising for the synthesis of alkylated chiral amines, precisely regulating the stereoselectivity of IRED remains a great challenge. Herein, focusing on the residues directly in contact with the ketone moiety, we applied structure-guided semi-rational design to obtain the triple-mutant I149Y/L200H/W234K. This mutant showed high stereoselectivity, of up to >99% (S), toward reductive amination of N-Boc-4-oxo-azepane and different amines, and to the best of our knowledge is the first biocatalyst developed for asymmetric synthesis of chiral azepane-4-amines.

6.
Chembiochem ; 23(11): e202200179, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35384232

RESUMO

Deacetoxycephalosporin C synthase (DAOCS) catalyzes the transformation of penicillin G to phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA) for which it depends on 2-oxoglutarate (2OG) as co-substrate. However, the low activity of DAOCS and the expense of 2OG restricts its practical applications in the production of G-7-ADCA. Herein, a rational design campaign was performed on a DAOCS from Streptomyces clavuligerus (scDAOCS) in the quest to construct novel expandases. The resulting mutants showed 25∼58 % increase in activity compared to the template. The dominant DAOCS variants were then embedded into a three-enzyme co-expression system, consisting of a catalase and an L-glutamic oxidase for the generation of 2OG, to convert penicillin G to G-7-ADCA in E. coli. The engineered whole-cell enzyme cascade was applied to an up-scaled reaction, exhibiting a yield of G-7-ADCA up to 39.21 mM (14.6 g ⋅ L-1 ) with a conversion of 78.42 mol %. This work highlights the potential of the integrated whole-cell system that may inspire further research on green and efficient production of 7-ADCA.


Assuntos
Transferases Intramoleculares , Biotransformação , Cefalosporinas , Escherichia coli/genética , Escherichia coli/metabolismo , Transferases Intramoleculares/metabolismo , Penicilina G/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo
7.
Metab Eng ; 72: 56-65, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35245651

RESUMO

We have engineered brewer's yeast as a general platform for de novo synthesis of diverse ß-lactam nuclei starting from simple sugars, thereby enabling ready access to a number of structurally different antibiotics of significant pharmaceutical importance. The biosynthesis of ß-lactam nuclei has received much attention in recent years, while rational engineering of non-native antibiotics-producing microbes to produce ß-lactam nuclei remains challenging. Benefited by the integration of heterologous biosynthetic pathways and rationally designed enzymes that catalyze hydrolysis and ring expansion reactions, we succeeded in constructing synthetic yeast cell factories which produce antibiotic cephalosporin C (CPC, 170.1 ± 4.9 µg/g DCW) and the downstream ß-lactam nuclei, including 6-amino penicillanic acid (6-APA, 5.3 ± 0.2 mg/g DCW), 7-amino cephalosporanic acid (7-ACA, 6.2 ± 1.1 µg/g DCW) as well as 7-amino desacetoxy cephalosporanic acid (7-ADCA, 1.7 ± 0.1 mg/g DCW). This work established a Saccharomyces cerevisiae platform capable of synthesizing multiple ß-lactam nuclei by combining natural and artificial enzymes, which serves as a metabolic tool to produce valuable ß-lactam intermediates and new antibiotics.


Assuntos
Saccharomyces cerevisiae , beta-Lactamas , Antibacterianos , Vias Biossintéticas , Saccharomyces cerevisiae/metabolismo , beta-Lactamas/metabolismo
8.
Metab Eng ; 69: 198-208, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902590

RESUMO

Privileged ergot alkaloids (EAs) produced by the fungal genus Claviceps are used to treat a wide range of diseases. However, their use and research have been hampered by the challenging genetic engineering of Claviceps. Here we systematically refactored and rationally engineered the EA biosynthetic pathway in heterologous host Aspergillus nidulans by using a Fungal-Yeast-Shuttle-Vector protocol. The obtained strains allowed the production of diverse EAs and related intermediates, including prechanoclavine (PCC, 333.8 mg/L), chanoclavine (CC, 241.0 mg/L), agroclavine (AC, 78.7 mg/L), and festuclavine (FC, 99.2 mg/L), etc. This fungal platform also enabled the access to the methyl-oxidized EAs (MOEAs), including elymoclavine (EC), lysergic acid (LA), dihydroelysergol (DHLG), and dihydrolysergic acid (DHLA), by overexpressing a P450 enzyme CloA. Furthermore, by optimizing the P450 electron transfer (ET) pathway and using multi-copy of cloA, the titers of EC and DHLG have been improved by 17.3- and 9.4-fold, respectively. Beyond our demonstration of A. nidulans as a robust platform for EA overproduction, our study offers a proof of concept for engineering the eukaryotic P450s-contained biosynthetic pathways in a filamentous fungal host.


Assuntos
Claviceps , Alcaloides de Claviceps , Vias Biossintéticas/genética , Claviceps/genética , Claviceps/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Alcaloides de Claviceps/genética , Alcaloides de Claviceps/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
Appl Microbiol Biotechnol ; 106(8): 2981-2991, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35389067

RESUMO

Ergot alkaloids (EAs) are among the most important bioactive natural products. FeII/α-ketoglutarate-dependent dioxygenase Aj_EasH from Aspergillus japonicus is responsible for the formation of the cyclopropyl ring of the ergot alkaloid (EA) cycloclavine (4). Herein we reconstituted the biosynthesis of 4 in vitro from prechanoclavine (1) for the first time. Additionally, an unexpected activity of asymmetric hydroxylation at the C-4 position of EA compound festuclavine (5) for Aj_EasH was revealed. Furthermore, Aj_EasH also catalyzes the hydroxylation of two more EAs 9,10-dihydrolysergol (6) and elymoclavine (7). Thus, our results proved that Aj_EasH is a promiscuous and bimodal dioxygenase that catalyzes both the formation of cyclopropyl ring in 4 and the asymmetric hydroxylation of EAs. Molecular docking (MD) revealed the substrate-binding mode as well as the catalytic mechanism of asymmetric hydroxylation, suggesting more EAs could potentially be recognized and hydroxylated by Aj_EasH. Overall, the newly discovered activity empowered Aj_EasH with great potential for producing more diverse and bioactive EA derivatives. KEY POINTS: • Aj_EasH was revealed to be a promiscuous and bimodal FeII/α-ketoglutarate-dependent dioxygenase. • Aj_EasH converted festuclavine, 9,10-dihydrolysergol, and elymoclavine to their hydroxylated derivatives. • The catalytic mechanism of Aj_EasH for hydroxylation was analyzed by molecular docking.


Assuntos
Alcaloides de Claviceps , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Compostos Ferrosos , Hidroxilação , Simulação de Acoplamento Molecular
10.
Proc Natl Acad Sci U S A ; 116(12): 5499-5504, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30842286

RESUMO

Fungi have the potential to produce a large repertoire of bioactive molecules, many of which can affect the growth and development of plants. Genomic survey of sequenced biofertilizer fungi showed many secondary metabolite gene clusters are anchored by iterative polyketide synthases (IPKSs), which are multidomain enzymes noted for generating diverse small molecules. Focusing on the biofertilizer Trichoderma harzianum t-22, we identified and characterized a cryptic IPKS-containing cluster that synthesizes tricholignan A, a redox-active ortho-hydroquinone. Tricholignan A is shown to reduce Fe(III) and may play a role in promoting plant growth under iron-deficient conditions. The construction of tricholignan by a pair of collaborating IPKSs was investigated using heterologous reconstitution and biochemical studies. A regioselective methylation step is shown to be a key step in formation of the ortho-hydroquinone. The responsible methyltransferase (MT) is fused with an N-terminal pseudo-acyl carrier protein (ψACP), in which the apo state of the ACP is essential for methylation of the growing polyketide chain. The ψACP is proposed to bind to the IPKS and enable the trans MT to access the growing polyketide. Our studies show that a genome-driven approach to discovering bioactive natural products from biofertilizer fungi can lead to unique compounds and biosynthetic knowledge.


Assuntos
Arabidopsis/metabolismo , Ferro/metabolismo , Policetídeos/metabolismo , Trichoderma/genética , Arabidopsis/enzimologia , Redes e Vias Metabólicas/genética , Metilação , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Família Multigênica/genética , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Trichoderma/enzimologia , Trichoderma/metabolismo
11.
Angew Chem Int Ed Engl ; 61(24): e202201908, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35322515

RESUMO

Although imine reductases (IREDs) are emerging as attractive reductive aminases (RedAms), their substrate scope is still narrow, and rational engineering is rare. Focusing on hydrogen bond reorganization and cavity expansion, a concise strategy combining rational cavity design, combinatorial active-site saturation test (CAST), and thermostability engineering was designed, that transformed the weakly active IR-G36 into a variant M5 with superior performance for the synthesis of (R)-3-benzylamino-1-Boc-piperidine, with a 4193-fold improvement in catalytic efficiency, a 16.2 °C improvement in Tm , and a significant increase in the e.e. value from 78 % (R) to >99 % (R). M5 exhibits broad substrate scope for the synthesis of diverse azacycloalkylamines, and the reaction was demonstrated on a hectogram-scale under industrially relevant conditions. Our study provides a compelling example of the preparation of versatile and efficient IREDs, with exciting opportunities in medicinal and process chemistry as well as synthetic biology.


Assuntos
Iminas , Oxirredutases , Aminação , Biocatálise , Iminas/química , Oxirredutases/química , Estereoisomerismo
12.
Appl Microbiol Biotechnol ; 105(16-17): 6333-6343, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34423409

RESUMO

The industrially important meta-cresol (m-cresol, 3-methylphenol) is mainly produced from fossil resources by chemical methods. The microbial production of m-cresol was rarely investigated. Herein, we constructed a platform for the overproduction of m-cresol in a modified fungus Aspergillus nidulans FGSC no. A1145∆ST∆EM, which gave a gram-level titer using starch as carbon resource. For the biosynthesis of m-cresol, the 6-methyl salicylic acid synthase (MSAS)-encoding gene patK and 6-methyl salicylic acid decarboxylase-encoding gene patG from A. clavatus were co-expressed in the host A. nidulans. Multiple strategies, including promotor engineering, gene multiplication, and fed-batch fermentation, were applied to raise the production of m-cresol, which resulted in the titers of 1.29 g/L in shaking flasks and 2.03 g/L in fed-batch culture. The chassis cell A. nidulans A1145∆ST∆EM was proved to possess better tolerance to m-cresol than yeast, as it could grow in the liquid medium containing up to 2.5 g/L of m-cresol. These results showed that A. nidulans has great potential to be further engineered for industrial production of m-cresol.Key points• m-Cresol was de novo biosynthesized by a fungal chassis cell Aspergillus nidulans.• Promoter engineering and gene multiplication implemented the fine-tuned genes expression.• The titer of m-cresol reached 2.03 g/L via fed-batch culture.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Cresóis , Fermentação , Saccharomyces cerevisiae
13.
Appl Microbiol Biotechnol ; 105(13): 5407-5417, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34155529

RESUMO

Fungal terpenoids catalyzed by bifunctional terpene synthases (BFTSs) possess interesting bioactive and chemical properties. In this study, an integrated approach of genome mining, heterologous expression, and in vitro enzymatic activity assay was used, and these identified a unique BFTS sub-clade critical to the formation of a 5-15 trans-fused bicyclic sesterterpene preterpestacin I (1). The 5-15 bicyclic BFTS gene clusters were highly conserved but showed relatively wide phylogenetic distribution across several species of the diverged fungal classes Dothideomycetes and Sordariomycetes. Further genomic organization analysis of these homologous biosynthetic gene clusters from this clade revealed a glycosyltransferase from the graminaceous pathogen Bipolaris sorokiniana isolate BS11134, which was absent in other 5-15 bicyclic BFTS gene clusters. Targeted isolation guided by BFTS gene deletion led to the identification of two new sesterterpenoids (4, and 6) from BS11134. Compounds 2 and 4 showed moderate effects on LPS-induced nitrous oxide production in the murine macrophage-like cell line RAW264.7 with in vitro inhibition rates of 36.6 ± 2.4% and 24.9 ± 2.1% at 10 µM, respectively. The plausible biosynthetic pathway of these identified compounds was proposed as well. This work revealed that phytopathogenic fungi can serve as important sources of active terpenoids via systematic analysis of the genomic organization of BFTS biosynthetic gene clusters, their phylogenetic distribution in fungi, and cyclization properties of their metabolic products. KEY POINTS: • Genome mining of the first BFTS BGC harboring a glycosyltransferase. • Gene-deletion guided isolation revealed three novel 5-15 bicyclic sesterterpenoids. • Biosynthetic pathway of isolated sesterterpenoids was proposed.


Assuntos
Vias Biossintéticas , Fungos , Animais , Anti-Inflamatórios , Vias Biossintéticas/genética , Fungos/genética , Camundongos , Família Multigênica , Filogenia , Terpenos
14.
J Am Chem Soc ; 141(44): 17517-17521, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31621316

RESUMO

A dedicated enzyme for the formation of the central C ring in the tetracyclic ergoline of clinically important ergot alkaloids has never been found. Herein, we report a dual role catalase (EasC), unexpectedly using O2 as the oxidant, that catalyzes the oxidative cyclization of the central C ring from a 1,3-diene intermediate. Our study showcases how nature evolves the common catalase for enantioselective C-C bond construction of complex polycyclic scaffolds.


Assuntos
Catalase/química , Ergolinas/síntese química , Proteínas Fúngicas/química , Aspergillus fumigatus/enzimologia , Aspergillus nidulans/enzimologia , Ciclização , Radicais Livres/química , Modelos Químicos , Oxirredução , Saccharomyces cerevisiae/enzimologia
15.
J Am Chem Soc ; 140(6): 2067-2071, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29373009

RESUMO

UCS1025A is a fungal polyketide/alkaloid that displays strong inhibition of telomerase. The structures of UCS1025A and related natural products are featured by a tricyclic furopyrrolizidine connected to a trans-decalin fragment. We mined the genome of a thermophilic fungus and activated the ucs gene cluster to produce UCS1025A at a high titer. Genetic and biochemical analysis revealed a PKS-NRPS assembly line that activates 2S,3S-methylproline derived from l-isoleucine, followed by Knoevenagel condensation to construct the pyrrolizidine moiety. Oxidation of the 3S-methyl group to a carboxylate leads to an oxa-Michael cyclization and furnishes the furopyrrolizidine. Our work reveals a new strategy used by nature to construct heterocyclic alkaloid-like ring systems using assembly line logic.


Assuntos
Vias Biossintéticas , Família Multigênica , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Sordariales/enzimologia , Ciclização , Genes Fúngicos , Peptídeo Sintases/genética , Policetídeo Sintases/genética , Sordariales/genética , Sordariales/metabolismo
16.
J Am Chem Soc ; 140(22): 6991-6997, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29741874

RESUMO

Duclauxins are dimeric and heptacyclic fungal polyketides with notable bioactivities. We characterized the cascade of redox transformations in the biosynthetic pathway of duclauxin from Talaromyces stipitatus. The redox reaction sequence is initiated by a cupin family dioxygenase DuxM that performs an oxidative cleavage of the peri-fused tricyclic phenalenone and affords a transient hemiketal-oxaphenalenone intermediate. Additional redox enzymes then morph the oxaphenoalenone into either an anhydride or a dihydrocoumarin-containing monomeric building block that is found in dimeric duxlauxins. Oxidative coupling between the monomers to form the initial C-C bond was shown to be catalyzed by a P450 monooxygenase, although the enzyme responsible for the second C-C bond formation was not found in the pathway. Collectively, the number and variety of redox enzymes used in the duclauxin pathway showcase Nature's strategy to generate structural complexity during natural product biosynthesis.


Assuntos
Dioxigenases/metabolismo , Fenalenos/metabolismo , Policetídeos/metabolismo , Talaromyces/química , Cromonas/química , Cromonas/metabolismo , Estrutura Molecular , Oxirredução , Fenalenos/química , Policetídeos/química , Talaromyces/metabolismo
17.
Nat Prod Rep ; 35(8): 792-837, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29932179

RESUMO

Covering: up to 2018 α-Ketoglutarate (αKG, also known as 2-oxoglutarate)-dependent mononuclear non-haem iron (αKG-NHFe) enzymes catalyze a wide range of biochemical reactions, including hydroxylation, ring fragmentation, C-C bond cleavage, epimerization, desaturation, endoperoxidation and heterocycle formation. These enzymes utilize iron(ii) as the metallo-cofactor and αKG as the co-substrate. Herein, we summarize several novel αKG-NHFe enzymes involved in natural product biosyntheses discovered in recent years, including halogenation reactions, amino acid modifications and tailoring reactions in the biosynthesis of terpenes, lipids, fatty acids and phosphonates. We also conducted a survey of the currently available structures of αKG-NHFe enzymes, in which αKG binds to the metallo-centre bidentately through either a proximal- or distal-type binding mode. Future structure-function and structure-reactivity relationship investigations will provide crucial information regarding how activities in this large class of enzymes have been fine-tuned in nature.


Assuntos
Produtos Biológicos/metabolismo , Enzimas/química , Enzimas/metabolismo , Ferro/química , Ácidos Cetoglutáricos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Carnitina/biossíntese , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ciclopropanos/química , Ciclopropanos/metabolismo , Etilenos/biossíntese , Halogenação , Heme
19.
J Am Chem Soc ; 139(15): 5317-5320, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28365998

RESUMO

Fungal polyketide synthases (PKSs) can function collaboratively to synthesize natural products of significant structural diversity. Here we present a new mode of collaboration between a highly reducing PKS (HRPKS) and a PKS-nonribosomal peptide synthetase (PKS-NRPS) in the synthesis of oxaleimides from the Penicillium species. The HRPKS is recruited in the synthesis of an olefin-containing free amino acid, which is activated and incorporated by the adenylation domain of the PKS-NRPS. The precisely positioned olefin from the unnatural amino acid is proposed to facilitate a scaffold rearrangement of the PKS-NRPS product to forge the maleimide and succinimide cores of oxaleimides.


Assuntos
Produtos Biológicos/metabolismo , Maleimidas/metabolismo , Penicillium/enzimologia , Policetídeo Sintases/metabolismo , Succinimidas/metabolismo , Produtos Biológicos/química , Maleimidas/química , Conformação Molecular , Policetídeo Sintases/química , Succinimidas/química
20.
J Am Chem Soc ; 139(10): 3639-3642, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28240554

RESUMO

Hydroalkoxylation is a powerful and efficient method of forming C-O bonds and cyclic ethers in synthetic chemistry. In studying the biosynthesis of the fungal natural product herqueinone, we identified an enzyme that can perform an intramolecular enantioselective hydroalkoxylation reaction. PhnH catalyzes the addition of a phenol to the terminal olefin of a reverse prenyl group to give a dihydrobenzofuran product. The enzyme accelerates the reaction by 3 × 105-fold compared to the uncatalyzed reaction. PhnH belongs to a superfamily of proteins with a domain of unknown function (DUF3237), of which no member has a previously verified function. The discovery of PhnH demonstrates that enzymes can be used to promote the enantioselective hydroalkoxylation reaction and form cyclic ethers.


Assuntos
Liases/metabolismo , Fenalenos/metabolismo , Biocatálise , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa